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Only the Groucho number ensures dynamic similarity during walking 
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Abstract: In this paper, we present a method to assess dynamical similarity in bipedal walking based on a 

dimensionless bipedal spring-mass model (BSMM). We first introduce a new formulation of the BSMM based on the 
Groucho number. We discuss, afterwards, how to experimentally measure the necessary parameters. The use of the 
dimensionless bipedal spring-mass model permits to evaluate whether two systems operate dynamically similar, and to 
judge whether these systems walk in a self-stable region. 
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1. INTRODUCTION 
 
Not only Humans are able to walk bipedally. Also 

many avian species are successful as semi or complete 
terrestrial animals. Interestingly, the evolutionary 
constrains imposed by the avian body plan leads to a 
different geometrical construction of avian legs 
compared with those in humans. Based on theropod 
hindlimb configuration, that of birds was highly 
modified during evolution. The femur was shifted to a 
more horizontal orientation and relatively shorted. 
Bones of the distal limb segments have been fused and 
modified, leading to the tibiotarsus and tarsometatarsus.  
Overall changes in hindlimbs geometry are understood 
as adaptations to cursorial locomotion, to leap from the 
substrate during takeoff, and to absorb the shock of 
landing [1, 2]. Finally, birds do not walk with the soles 
of their feet, like humans do, but on their toes 
(digitigrade locomotion).  

Different patterns in limb proportions and orientation 
may reflect different segment usages and loadings, and 
thus different local kinematics and dynamics. On the 
other hand, that fact does not exclude that global 
locomotion during walking used by humans and birds 
could not be dynamically similar. We think, this 
question was not adequately addressed so far. 

Specially since popularized by Alexander [3], the 
Froude number (Fr) Fr = u2/gh  has been used so far to 
compare bipedal and quadrupedal locomotion. Here, u 
is the cursorial velocity, h is the leg length, and g is 
gravity. The Froude number is directly related to the 
inverted pendulum, as it actually reflects the ratio 
between inertial and gravitational forces during walking 
or running. The inverted pendulum template, however, 
cannot adequately reflect the dynamics of walking. 

The simplest model, which is able to reproduce 
bipedal gait dynamics, i.e. motions of the centre of mass 
(CoM) and ground reaction forces (GRF), is the bipedal 
spring-mass model (BSMM) [4]. Although human legs 
are complex in structure and control, it seems that they 
can generate a spring like behavior during walking at 
moderate speeds [6]. Until now, the BSMM was 
formulated only dimensional. Results were afterwards 
converted to dimensionless description using the Fr for 
speed. But, as stated before, Fr may not be an adequate 

quantity to characterize dynamic similarity of compliant 
systems. In that case, dynamic similarity can only be 
ensured, if both systems have the same Groucho number 
(Gr), Gr = uω0/g. here, u is the cursorial velocity, 0 is 
the natural frequency of the system, and g is gravity [5]. 
In this paper, we present a method to assess dynamic 
similarity in bipedal walking based on a dimensionless 
BSMM. We first introduce a new formulation of the 
BSMM based on the Gr. We discuss, afterwards, how to 
measure experimentally the necessary parameters. 
Finally we demonstrate how we can use this formulation 
to compare the dynamics of two systems and whether 
these two systems walk in a self-stable region. 

  
2. METHODS 

 
2.1 Dimensionless bipedal spring-mass model 

The template for this study is a dimensionless BSSM. 
This describes the action of the stance leg(s) by a (two) 
dimensionless linear spring(s) of leg stiffness 
𝑘෠ = 𝑘𝑙଴/𝑚𝑔  . Note that the dimensionless rest length 
𝑙መ௢  is equal to 𝑘෠.  The dimensionless equations of 
motion restricted to the sagittal plane are: 

 

𝑥̈෠ = −𝑘෠෍ቆ
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−
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                                                                                            (2) 

 
where a = 1 for the single (SSPh) and 2 for the double 
support phase (DSPh).  All following quantities are 
dimensionless: 𝑥̈෠, 𝑦̈෠, 𝑥ො, 𝑦ො   are the accelerations, and 
positions of the CoM. 𝑥ොி௉௜  is the horizontal distance 
between CoM and foot (feet) position(s), and 𝑙መ௜   is the 
leg length of the stance leg(s). A dimensionless model is 
characterized by a minimal set of parameters. In our 
case we chose the dimensionless stiffness  𝑘෠ , the angle of 
attack 𝛼଴ , the leg compression , and the Groucho 
velocity Gr. 
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2.2 Simulation 
Simulations start when the supporting leg is oriented 

vertically (𝑥ො = 𝑥ොி௉௜  = 0), initial height 𝑦ො଴ = 𝑙መ଴ − 𝜆, 
and horizontal velocity equal to the Gr. The model 
switches to the DSPh when for leg 2 the condition 
𝑦ො = 𝑙መ଴ sin 𝛼଴ is met. Then it returns to SSPh when for 
leg 1 𝑙መଵ = 𝑙መ଴. We exploit the convergence to fixed points 
to find steady-state locomotion. We map the space (Gr, 𝑘෠ , 
α) for different λ. If any of these states lies in the basis of 
attraction of a fixed point, the model converges to 
steady-state trajectories. We accept a fix point as stable if 
the simulation reaches 100 steps.  

 
2.3 Experimental Parameters 

In order to compare different systems such as humans 
or animals, four parameters have to be experimentally 
determined: 𝑘෠ , α0,  Gr,  and  λ. As leg length in our model 
is symmetric related to touch down (TD) and take off  
(TO) events,    some assumptions have to be made, in 
order to determine k (for both humans and birds leg 
length is longer at TO compared with TD). So we 
compute k as 𝑘 = 𝐺𝑅𝐹௠௜ௗ௦௧௔௡௖௘ ∆𝑙⁄ , where  
∆𝑙 = ((lleg(TD) + lleg(TO)) / 2) - lleg(midstance). α0 represents leg 
orientation with respect to the ground at TD. Gr is the 
cursorial velocity, and λ   can be obtained as λ   =  
GRFmidstance/BW.   

 
3. RESULTS, DISCUSSION & FURTHER 

WORK 
 

Depending on the chosen parameters, the model 
converges or not to steady-state locomotion. As we fix λ,  
we can also investigate whether the fixed points are 
shifted to lower or higher values of  λ compared to its 
starting value (basin of attraction). As an example Fig. 1 
displays fixed points for simulations started at a  λ  =  0.9.    
Six stable walking sub-domains are revealed.  

At lower Gr velocities, the number of peaks in the 
vertical GRF increases up to seven. In Fig. 1, the fix 
points are presented divided into three clusters, 
depending  on   the   final   λ      value   (black  0.8   ≤ λ  ≤ 0.95, 
magenta  λ  <  0.8  and  blue  λ  >  0.95). As expected, stable 
solutions   do   not   exist   for   λ   >   1 in the M-shape 
sub-domain. Furthermore, only a discrete set of start 
parameters result in stable operation at λ  values  close  to 
0.9. Our results show that for an even number of peaks,  λ  
should be lower as 1, while for uneven number of peaks, 
it should be higher than 1. This can be explained mostly 
by means of the symmetry of the GRF. On the other hand, 
it  seems  that  λ  never  reaches the value of 2. Using data 
from the literature [6] and the method explained in 
section 2.3 we had been able to locate a point which 
represents human walking at 1.15 m/s. Normal values of 
λ  at  those  speeds  seem  to  oscillate  about  ~  0.85  [6]. 

 

 
 

Fig. 1 Dimensionless stable walking sub-domains 
using leg compression λ = 0.9 as start parameter. 

 
The point computed is located inside the stable region 

between  fix  points  of  λ  values close to 0.9 and below 0.8 
(Fig.1). Lower   values   of   λ   increase the width of the 
M-shape sub-domain, and diminish that of the 
multi-peak sub-domains.  Lower   values   of   λ   increase 
also the vertical excursion of the CoM, which may lead 
to an increase in the cost of transport. Therefore, it seems 
that humans use rather self-stable walking regions, which 
minimize energy consumption (system parameters 
optimized for “endurance walking”).   

Also  the analysis of the influences of body-size 
(child, adult), or leg-stiffness (young, old) on walking 
dynamics must be based on an adequate dimensionless 
formulation. 

We are now performing, in cooperation with the Inst. 
of Systematic and Evolutionary Zoology of the 
University of Jena, kinematic and dynamic studies on 
small birds like quails using high-speed x-ray motion 
analysis and custom designed force plates. Results of 
these experiments will be examined with respect to  
dynamic similarities or differences. 
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