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Abstract: Detailed neuron models based on measured ionic currents are still exceptional when considering the bewilder-
ing variety of cell types investigated because determining ionic currents requires very favorable experimental conditions.
The situation is still worse for multi-compartment models, but such models are required for detailed simulations of com-
plex neural networks. To alleviate these difficulties, we propose a method that allows estimating ionic currents and passive
properties based on simple electrophysiological responses and assumptions concerning the types of currents involved.
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1. INTRODUCTION
Nervous systems are capable of solving problems that

pose considerable difficulties to conventional computing
methods. An example of such a problem is the chem-
ical plume tracking problem, solved by male silkmoths
(Bombyx mori) displaying odor-source orientation be-
haviour[1]. We use various approaches to elucidate the
solution of this problem are followed using a combina-
tion of robotics, models, silkmoths, and their brains[2, 3].
In particular, the use of neural network models as robot

controllers is promising as behavior at different levels can
be directly compared to the biological system. However,
a suitable level of detail is required for the implementa-
tion of such neural network models because much of the
properties of the neurons reside in their complex morpho-
logical and electrical properties. Generally, it is not feasi-
ble to obtain complete biophysical characterisations of all
the neurons of interest. Therefore, it is highly desirable
to obtain at reasonable estimates of the actual biophys-
ical properties from more restricted experimental data.
The number of parameters to be estimated is a drawback
in this strategy: an automated fitting scheme is required,
notably when expanding estimations to allow for multi-
compartment models including neural morphology.
To address this problem, we have developed a system

in which parameter estimates can be carried out automat-
ically by including the simulation of the neurons in the
fitting process. Due to the computational demands, we
implemented our system on the RIKEN integrated Clus-
ter of Clusters (RICC) and KEI facilities.

2. MATERIALS AND METHODS
2.1 Neuron Model Construction
We adopted silkmoths antennal lobe (AL) projection

neuron model as example (Fig. 1). This model is com-
posed of four parts: dendrite, soma, spike generator and
axon. Dendrite and soma compartments have passive
membrane potentials. Spike generator and axon compart-
ments have Hodgkin-Huxley (HH) type membrane poten-
tials[4] with three types of channels: Na+, K+ and Ca2+

Dendrite
  passive model
  764 compartment

Soma
  passive model
  61 compartment

Axon
  HH type model
  201 compartment
  low conductance

Spike Generator
  HH type model
  10 compartment
  high conductance

current clamp position

measurement position

Antennal Lobe Projection Neuron
Total : 1036 compartment

Fig. 1 The model of antennal lobe projection neuron of
the silkmoth, using in the simulation.

transit. Spike generator compartments have higher ionic
conductance than axon compartments.
This model neuron was simulated by “NEURON”[6],

an empirically-based neuron simulator. At the simula-
tion, neuron was subjected to a simulated experimental
current clamp, injecting a depolarizing ramp or ramp +
sin wave current. The voltage responses of the model
neurons to this stimulus were used as target data for re-
estimating the parameters used to construct the model
neurons.

2.2 Parameter Estimation
We adopted the real-coded genetic algorithm

(RCGA)[5] for parameter estimation because of its
good parallel efficiency. Parameters to estimate were
property of spike generator: position on axon, number
of compartments, a K+ conductance (GK), a Na+
conductance (GNa), and a Ca2+ conductance (GCa).
During parameter estimation, we simulated the model

neuron with the parameters of each gene, determin-
ing voltage responses to the current injections.Based on
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these potential changes P (t) and the target data potential
changes T (t), we defined fitness (F ) as:

F =
1

∫ tmax

0 [
∫ a
0 (P (t)− T (t))dt]2da

Reproduction on the GA, we apply uniform muta-
tion as mutation algorithm and BLX-α as crossover al-
gorithm. Additionally, some genes were mutated normal
random value for local searching.
Parameter estimates were done under the following

conditions:
• Processor: 256 cores
• Number of genes: 2048
• Number of generations: 200
• Simulation time step: 0.025 msec
• Simulation time range: 0 - 400 msec
• Estimation range:
– position of spike generator on axon: 0 - 200
– compartment number of spike generator: 1 - 50
– GK of spike generator: 0.0001 - 1.0000 S/cm2

– GNa of spike generator: 0.0001 - 10.000 S/cm2

– GCa of spike generator: 0.00001 - 0.10000 S/cm2

3. RESULT
We estimated parameters by using three types of cur-

rent clamp. Results of the estimations are shown in Fig.2.

4. DISCUSSION
Genetic algorithm in conjunction with the simulation

of neuron models allows parameter estimates for model
neurons. However, comparing each results of estima-
tion, case of ramp stimulation was not accurate as others
(Fig.2). It probably suggests that stimulation optimizing
is very important for estimation.
In the present study, we used model neurons and simu-

lations both for target data and for determining the fitness.
In the next step, we will employ complete electrophysio-
logical data from real neurons. To avoid overfitting due to

errors (and noise) in the experimental data, an error eval-
uation function may be implemented or the fitness func-
tion may have to be modified, for example by using spike
timing and number.
Our approach can easily be extended for application

to more detailed multi-compartment models. However,
such systems need very large computational resource. To
tackle this problem, we will use more CPUs (ex. 8192
cores on RICC or >10000 cores on KEI) and extend GA
like the island model GA.
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Fig. 2 Result of estimation Top: ramp stimulus current, Middle: ramp + sin wave (low frequency) stimulus current,
Bottom: ramp + sin wave (high freqency) stimulus current.


