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Abstract

It has been known that locomotor patterns of many legged
animals show common characteristics, which suggests that
there exists a basic strategy for legged locomotion. In this
study we examine the minimization of the cost of transport
as a candidate of the strategy. For this purpose we derive an
equation to estimate the cost of transport during legged lo-
comotion and show that the optimal locomotor pattern min-
imizing the cost well represents many characteristics of the
observed pattern in legged animals. The results suggest that
the locomotor pattern of legged animals are well optimized
on the energetic cost and the existence of specific gait pat-
terns and the phase transition between them are also results
of the optimization.

1. Introduction

Locomotor patterns of many legged animals, such as
a horse, a cat, a cockroach, and a crab, show common
characteristics as follows in spite of large difference
of body size, body structure, and number of legs as
suggested by Full and Tu (1990). (1) A stride period
decreases with locomotion velocity and reaches an al-
most constant value but a swing duration takes an al-
most constant value, which results in the decrease of
duty ratio, the ratio of the stance duration, the duration
a leg is in contact with the ground, to a stride period
with locomotion velocity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
The decrease of the duty ratio also means the de-
crease of the average number of stance legs. (2) The
stride length, the forward distance the body moves in
a stride period, and the stance length, the forward dis-
tance in a period in which a foot applies force to the
ground to support the body, slightly increases with
locomotion velocity or keeps almost constant value
[2, 3, 8, 11, 12, 13], and begins to increase after the
stride period reaches an almost constant value [8]. (3)
The gait pattern tends to show non-graded change and
stays at some specific patterns such as walking and
trotting [14, 15]. In quadrupods such as a horse three
typical gait patterns are observed, and in six legged in-
sects five typical patterns are reported [9]. The tran-

sition between gaits occurs in phase transition man-
ner in four legged mammals, however, the existence
of graded transition has been also suggested in in-
sects [16, 17]. (4) The cost of transport, the energetic
cost to move a unit mass a unit distance, decreases
with velocity and becomes an almost constant value
[1, 4, 12, 18, 19, 20, 21, 22, 23].

The existence of these common characteristics indi-
cates that there exists a basic strategy for the choice of
a gait pattern in many legged animals. As a candidate
of the strategy the minimization of the cost of transport
was suggested by Hoyt and Taylor (1981) by an experi-
ment measuring the oxygen consumption during horse
locomotion. Recent studies by Nishii (1998,2000)
showed that many characteristics of the optimal lo-
comotor pattern minimizing the cost of transport esti-
mated for a dynamical model of insects are coincident
with observed locomotor patterns. In the latter study
the optimal locomotor pattern was computed by using
inverse dynamics method, however, no explicit equa-
tion to estimate the energetic cost during locomotion
was not given, which makes difficult to understand the
detailed account of the cost.

In this study we will derive an equation to estimate
the cost of transport and show that the criterion of the
minimization of the cost given by the equation explains
many characteristics of legged locomotions.

2. Estimation of the energetic cost of
transport

As parameters to define a gait pattern we consider
duty ratio β, a stride period T , and stance length S.
We assume that the values of these parameters are the
same for all legs respectively, the stance length is much
shorter than a leg length, and the body moves with al-
most constant velocity V . These parameters satisfy the
following relation.

V = S/βT. (1)

Therefore we must determine two parameters to spec-
ify a gait pattern. The relative velocity of i-th foot ẋ i to
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Figure 1: A simple leg model. Although a leg of most legged
animals is a multiple link system with multiple joints (e.g.,
see dashed line), we regard it as a simple one-link system in
the estimation of the mechanical work.

the body during stance phase is given by ẋ = −V and
we assume that the relative foot velocity during swing
phase takes sinusoidal form, i.e.,

ẋi(t) =a + b cos
2π

(1 − β)T
t, (0 ≤ t < (1 − β)T )

a =
βV

1 − β ,

b = − V

1 − β ,

(2)

where t = 0 is the time when the swing phase starts.
The position and the acceleration of a foot required for
the analysis in latter sections are given by the integra-
tion and the differentiation of the above equation.

2.1. Mechanical work to move a leg

Although a leg of legged animals is composed of multi-
ple links with multiple joints, we estimate the required
mechanical work to move a leg in a stride period by
regarding a leg as a simple one-link system with one
joint (Fig:1) and by ignoring the effect of the gravity
on a leg. We ignore the cost by negative mechan-
ical work because muscles consume positive energy
even for negative work but the energy loss is much
smaller than that for positive work with the same ab-
solute value [26]. The mechanical work to move i-th
leg Wi is given by

Wi =
∫

T

f(τiθ̇i)dt, (3)

where τi and θ̇i � ẋ(t)/l are the joint torque and the
angular velocity of i-th leg, respectively, l is the length
of a leg, and f(x) = x for x ≥ 0 and f(x) = 0 for
x < 0.

By putting the inertia moment of a leg around its
joint as I , the joint torque during swing phase τ sw

i is
given by

τsw
i (t) = Iθ̈i(t) � Iẍi(t)/l. (4)

Equations (2) and (4) give the mechanical work during
swing phase W sw

i as

W sw
i =

∫
Tsw

f(τsw
i θ̇i)dt � I

(
V

l

)2 1 + β2

(1 − β)2 ,

(5)

where Tsw = (1−β)T is the swing duration. This term
corresponds to the work supplying the kinetic ener-
gies for the maximum angular velocities during stance

phase
V

l
and swing phase

1 + β

1 − β

V

l
. The mechani-

cal power, the work in a unit time, given by the above
equation divided by a stride period takes the same form
as the power derived by Minetti (1998) except the con-
stant coefficient.

During stance phase the angular velocity of a leg is
θ̇ � −V/l and the joint torque τ st

i takes

τst
i (t) = −Ni(t)xi(t), (6)

where Ni(t) is the ground reaction force for i-th leg.
Therefore the mechanical work during stance phase
W st

i is given by

W st
i �

∫
Tst

f(Ni(t)xi(t)) · V

l
dt, (7)

where Tst = βT is the duration of the stance phase.
From eq. (5) and (7) we obtain the total mechanical
work:

Wi = W sw
i + W st

i

�I

(
V

l

)2 1 + β2

(1 − β)2
+
∫

Tst

f(Ni(t)xi(t)) · V

l
dt.

(8)

2.2. Heat energy loss due to force generation

Muscles consume energy in force generation even if no
mechanical work is done such as in isometric contrac-
tions, and the consumed energy is lost as heat energy.
During locomotion muscles consume energy by such
heat emission in the force generation to support the
body and to produce mechanical works to move legs.
Because the relation between muscle force and heat
energy loss during locomotion has not been known
in physiological experiments, we assume that the cost
H is proportional to the k-th power of produced joint
torque τ , i.e., H(τ) ∝ |τ |k.



Under this assumption we estimate the heat energy
loss for i-th leg. During swing phase the heat energy
loss Hsw

i is due to torque to swing a leg (eq. (4)) and
given by

Hsw
i = γ

∫
Tsw

|τsw
i (t)|kdt. (9)

During stance phase the heat energy loss H st
i takes

Hst
i = γ

∫
Tst

(|τst
i (t)|k + |αNi(t)|k)dt

=γ

∫
Tst

|Ni(t)|k(|x(t))|k + αk)dt, (10)

where α and γ are constant values. The first term is the
cost due to rotational torque generation to move a leg
against the ground reaction force. Legs of most insects
radially spread from their body, therefore, steady joint
torque is required to maintain such posture. In most
mammals steady joint torque is also required to main-
tain a bended leg posture under their body. The second
term represents the heat energy loss due to such joint
torque.

When the body stands still with nst stance legs and
the body weight is equally distributed for all stance
legs, i.e., the ground reaction force for each stance
leg is Ni = W/nst, the total heat energy loss for all
legs is proportional to nst(W/nst)k. In the case of
k > 1 distributing the body weight in many legs sup-
presses the heat energy loss to support the body, be-
cause nst(W/nst)k < mst(W/mst)k holds for nst >
mst.

From eq. (9) and (10) we obtain the total heat energy
loss:

Hi = Hsw
i + Hst

i

= γ

{∫
Tsw

|τsw
i (t)|kdt+

∫
Tst

{|Ni(t)|k(αk + |x(t)|k)
}

dt

}
.

(11)

2.3. Cost of transport

Total energetic cost for i-th leg during a stride period
Ei is given by the sum of eq. (8) and (11). Therefore,
the cost of transport e, the energetic cost to move a unit
weight a unit distance, is given by

e =
∑n

i=1 Ei

WV T ,
(12)

where n is the number of legs and W is the body
weight.

Let us try the further analysis of eq. (12) under
the assumption: the ground reaction force is given by

the body weight W divided by the average number
of stance legs nβ, i.e., Ni = W/nβ. When heat en-
ergy loss is proportional to the square of the generated
torque, i.e., k = 2, the cost of transport given by eq.
(12) with (8) and (11) takes the following form.

e(V,β, S) = esw
w + est

w + esw
h + est

h ,

esw
w ≡

∑n
i=1 W sw

i

WV T
=

n

WV T
· I

l2
V 2 1 + β2

(1 − β)2

=
nI

l2W

βV 2

S

1 + β2

(1 − β)2 ,

est
w ≡

∑n
i=1 W st

i

WV T
=

n

WV T
· W

8l

S2

nβ

=
1
8l

S,

esw
h ≡

∑n
i=1 Hsw

i

WV T
=

n

WV T
· γ 2π2I2

l2
βV 3

(1 − β)3S

= γ
2nπ2I2

l2W

V 3β2

(1 − β)3S2
,

est
h ≡

∑n
i=1 Hst

i

WV T
=

n

WV T
· γ
(

W

n

)2
S

β2V
(α2 +

S2

12
)

= γ
W

n

1
βV

(α2 +
S2

12
), (13)

where est
w and esw

w are the costs of transport due to me-
chanical work during stance phase and swing phase,
respectively, and esw

h and est
h are the costs due to heat

energy loss during swing phase and stance phase, re-
spectively.

The equation (13) suggests that larger duty ratio β
suppresses the heat energy loss during stance phase
because the force to support the body weight is dis-
tributed in many legs, but causes larger costs during
swing phase, esw

h and esw
w , to move a leg in a shorter

duration of swing phase. During swing phase stance
length S does not affect the mechanical work and
larger stance length gives smaller heat energy loss. Be-
cause larger stance length gives smaller step number to
move a unit distance, it suppresses the cost to move a
unit distance during swing phase, esw

w and esw
h . How-

ever, larger stance length also results in larger energy
loss during stance phase, est

w and est
h , because of the

increase of required rotational torque against the body
weight especially when the leaning of a leg is large.
Therefore, the optimal stance length S and the optimal
duty ratio β are determined by the balance between the
costs due to the torque against the body weight during
stance phase and the torque to move a leg during swing
phase.

In lower velocities the heat energy loss during stance
phase, est

h , is dominant in the total energy cost in or-



der to support the body, therefore, larger duty ratio β
and smaller stance length S would be expected to sup-
press the cost. On the other hand, in higher veloci-
ties the cost during swing phase, esw

w and esw
h , is dom-

inant in order to swing legs as suggested by Delcomyn
and Usherwood (1973), therefore, smaller duty ratio
β and larger stance length S would be expected so as
to suppress the cost. From these considerations it is
expected that as locomotion velocity increases duty ra-
tio decreases, in other words the number of stance legs
decreases, and stance length increases. The increase
in stance length, however, might be suppressed by the
mechanical work during stance phase est

w .

When the heat energy loss is assumed to be propor-
tional to the generated force, i.e., k = 1, the cost of
transport due to heat emission takes the form

est
h = γ

1
V

(α +
S

4
)

esw
h = γ

4nI

lW

βV

S(1 − β)
(14)

In this case the total cost of transport monotonously
increases with the duty ratio β for all velocities, there-
fore, the smallest duty ratio always gives the minimum
cost, which cannot explain the observed gait transition
in legged animals.

In more general case in which the heat energy loss is
proportional to the k-th power of generated forces the
cost of transport during stance phase is estimated by

est
h = γ

n

WV T

∫ βT

0

(
W

nβ

)k

(αk + |x(t)|k)dt

= γ

(
W

n

1
β

)k−1 1
V

(
αk +

1
k + 1

(
S

2

)k
)

(15)

which decreases with the increase in duty ratio when
k > 1. This estimation suggests that k > 1 is re-
quired to explain the change in duty ratio as observed
in legged animals. From these considerations, we as-
sume k = 2 in the calculation of the optimal locomotor
pattern minimizing eq. (12) in the next section.

3. The optimal locomotor pattern

3.1. The optimal locomotor pattern with identical
legs

We calculated the optimal locomotor parameters, duty
ratio β and stance length S, to minimize the cost of
transport given by eq. (13) for each locomotion ve-
locity. The number of legs are set as n = 6, body
parameters are described in appendix, and duty ratio
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Figure 2: The optimal duty ratio.
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Figure 3: The optimal (solid line) stance and stride length
(dashed line). These values are normalized by a leg length.

is assumed to be larger than 0.5 (β ≥ 0.5) which
is the minimum value to enable static locomotion in
hexapods. These assumptions only affect the quantita-
tive features in the following results in this section and
the lower limit of duty ratio, because the characteris-
tics of all legs are identical and body structure does not
affect the estimation of the cost of transport in eq. (13)
except the quantitative characteristics caused by body
weight W .

Figure 2, 3, and 4 show the relation between the
optimal parameters and locomotion velocity. Figure
2 shows that the optimal duty ratio β decreases with
velocity as predicted in section 2.3., i.e., the optimal
number of stance legs decreases with velocity. Figure
3 shows that the optimal stride length V T (= S/β) in-
creases gradually with velocity and the stance length
S is almost constant in lower velocities (v < 0.21
[m/s]), and they increase with velocity when the duty
ratio takes its minimum value (v > 0.21 [m/s]). Fig-
ure 4 shows that the optimal stride period T (= S/βV )
decreases with velocity and reaches an almost constant
value when the duty ratio takes its minimum value, and
that there is no change in the swing duration (1−β)T .
Figure 5 shows the cost of transport given by the op-
timal parameters for each velocity. The cost decreases
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Figure 4: The optimal stride period (solid line) and duration
of swing phase (dashed line).
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Figure 5: The minimum cost of transport given by the opti-
mal parameters.

with velocities and reaches an almost constant value.

These characteristics of the optimal locomotor pat-
tern well coincident with those of observed legged lo-
comotor patterns as mentioned in Introduction.

3.2. From graded to non-graded gait transition

In the calculation of the optimal locomotor pattern in
the previous section ground reaction forces were set as
a time-independent constant value, N i = W/nβ, for
all stance legs. However, the ground reaction force for
each stance leg changes in real world according to leg
motion and the change in the number of stance legs.
We recomputed the optimal locomotor pattern from eq.
(8), (11), and (12) by considering more realistic distri-
bution of the ground reaction forces.

The number of legs is set as n = 6 again, and the
order of the leg movement is determined by the rule
observed in insects [9]; (1) anti-phase movement of
contra-lateral legs in the same segment, (2) forward
propagation of the leg movement in ipsi-lateral legs
by the same time delay given by a swing duration
(1 − β)T . Based on this rule a gait pattern is defined
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Figure 6: The optimal duty ratio. The pluses and the cir-
cles show the optimal duty ratios when the ground reac-
tion forces are given by body weight divided by the number
of stance legs and computed by considering the balance of
forces around the body, respectively.

for an arbitrary duty ratio and an arbitrary stride period.
The ground reaction force for each stance leg is deter-
mined for two situations; (1) the ground reaction forces
are given by the body weight divided by the number of
stance legs, i.e., Ni = W/nst, where nst is the num-
ber of stance legs, (2) the ground reaction forces are
computed by using pseudo-inverse matrix by consider-
ing the balance of forces around a rigid body at each
moment, in which the variance of the ground reaction
forces is minimized. In the former condition no lower
limit of duty ratio is assumed, but in the latter condition
duty ratio is assumed to be larger than 0.5 (β ≥ 0.5)
which enables static locomotions.

Figure 6 shows the optimal duty ratio. The
pluses and the circles show the optimal duty ratio
when the ground reaction forces are given by N i =
W/nst and computed by using pseudo-inverse ma-
trix, respectively. The optimal duty ratio decreases
with velocity but does not change monotonously
and tends to take some specific values, e.g., β =
10/12, 8/12, 6/12, 4/12 in pluses and β = 9/12, 8/12
in circles, of which values except β = 4/12 corre-
spond to typical gait patterns in insects reported by
Wilson (1966), e.g., wave gait (β ∼ 10/12) and
quadrupod gait (β ∼ 8/12), and tripod gait (β ∼
6/12). The transition between gaits shows not only
graded transition but also a discrete transition around
v = 0.03 [m/s] in circles and around v = 0.28 [m/s]
in pluses. When we use eq. (13) in the calculation of
the cost of transport, that is, the ground reaction forces
are equally set as Ni = W/nβ, such non-monotonous
transition of the optimal duty ratio is not observed (Fig.
2).

These results suggest that the emergence of specific
gait patterns and of discrete gait transition are results



of the optimization on the cost of transport, and the
change in the number of stance legs at each moment,
which causes change in the distribution of the ground
reaction forces on stance legs, would be a crucial trig-
ger to cause such non-graded gait transition as sug-
gested in Nishii (2000).

The emergence of different set of the stable duty ra-
tios for different distribution of ground reaction forces
suggests that body structure would determine the op-
timal set of gait patterns, which would explain the
facts that different species of insects and different birth
stages of some insects show different set of gait pat-
terns [9, 28].

4. Discussion

The characteristics of the obtained optimal locomotor
parameters, the duty ratio, the stance and the stride
lengths, the stride period, the swing duration, and the
cost of transport, are well coincident with those of ob-
served locomotor patterns mentioned in Introduction.
These results suggest that the locomotor pattern of
legged animals would be well optimized on the ener-
getic cost. Although we treat a leg as a simple one-link
system in the estimation of the mechanical work, the
characteristics of the obtained locomotor pattern min-
imizing the estimated cost also coincidents with those
given by using inverse-dynamics computation on a six
legged dynamical model with two-link legs by Nishii
(1998, 2000). These results suggest that eq. (12) and
(13) would give an essential account of energetic costs
during locomotion qualitatively.

4.1. Estimation of the heat energy loss

In conventional studies of the optimal legged loco-
motor pattern on the cost of transport, the mechani-
cal work was considered but the cost by heat emis-
sion which is an inevitable term in all actuators has
been scarcely considered [29, 30, 31]. In this study
we showed the optimality of legged locomotor patterns
under the assumption that the heat energy loss is pro-
portional to the square of the generated force. Here,
one problem arises whether this assumption is valid or
not.

The relation between generated force and heat en-
ergy loss during locomotion has not been known in
physiological studies because of the difficulty of mea-
suring the energetic cost in in vivo experiments. Hatze
and Buys (1977) predicted the relation in isometric
contractions of arm muscles by an analytical study us-
ing mathematical muscle models and suggested that

the heat energy loss Eh would increase exponentially
with the muscle contraction force f , i.e., Eh(f) ∝
exp(cf) − 1, (c:constant). For small f this relation is

approximated as Eh(f) ∝ cf +
(cf)2

2!
. The minimiza-

tion of the first term would not reproduce the charac-
teristics of observed locomotor patterns by the reason
discussed in section 2.2., and the second term would be
essential to explain the optimality of legged locomotor
patterns.

4.2. Underlying mechanism causing gait transi-
tion

Although the phase transition between observed gait
patterns have attracted many researchers, most of the-
oretical studies concerning this topic have paid atten-
tion to the neural control system, such as a neural de-
sign of a central pattern generator (CPG) [33, 34, 35,
36, 37, 38]. For instance, Kimura et.al (1993) pro-
posed a neural circuit model to reduce the energetic
cost for six legged locomotion of insects and showed
that specific gait patterns and phase transition between
them are emerged by using the neural circuit model,
however, it was not proved that the emerged locomotor
pattern was not just a result by using a specific neural
circuit but a result of the optimization on the energetic
cost.

The result of this paper indicates that the existence
of the specific gait pattern and the phase transition
could be not just a product of constraints in neural con-
trollers but a result of the optimization on energetic
cost, which would be also an important cue to inves-
tigate the design of neural systems to produce motor
commands for a legged locomotion.

Appendix

In the computations in this study we used the following
parameters: the total body mass is M = 3 [g], the
length of the body is L = 5 [cm], the leg mass is m =
0.2 [g], the leg length is l = 1 [cm], and constants are
a = 1, γ = 10. Legs are situated at the front, the
middle, and the back of the body.
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