An Adaptive Controller for Two Cooperating Flexible Manipulators

C. J. Damaren

University of Toronto
Institute for Aerospace Studies
4925 Dufferin Street
Toronto, ON M3H 5T6
Canada

Presented at the International Symposium on Adaptive Motion of Animals and Machines (AMAM)
Outline of Presentation

- Cooperating Flexible Manipulators
- Passivity Ideas
- Large Payload Dynamics
- The Adaptive Controller
- Experimental Apparatus and Results
- Conclusions
Adaptive Control of Rigid Manipulators

- Motivation: Mass property uncertainty

- Typical Controller Structure: adaptive feedforward + PD feedback

- Stability established using:
 ⇒ passivity property due to collocation
 ⇒ [problem is “square”]
 ⇒ dynamics are linear in mass properties
Cooperating Flexible Manipulators

Closed-Loop Multibody System
Cooperating Flexible Manipulator Systems: Characteristics

- Nonlinear system
 ⇒ rigid body nonlinearities “plus vibration modes”

- Input actuation and controlled output are noncollocated
 ⇒ Nonminimum phase system
 ⇒ Nonpassive system

- System is “rigidly” overactuated

- Vibration frequencies and/or mass properties may be uncertain
 ⇒ robust and/or adaptive control
Passivity Definitions

$u(t) \xrightarrow{G} y(t)$

Input $u(t)$, Output $y(t)$

G is a general input/output map
G is passive if

$$\int_0^\tau y^T(t)u(t)\,dt \geq 0, \quad \forall \tau > 0$$

G is strictly passive if

$$\int_0^\tau y^T(t)u(t)\,dt \geq \varepsilon \int_0^\tau u^T(t)u(t)\,dt, \quad \varepsilon > 0, \quad \forall \tau > 0$$
Passivity Theorem

If G is passive and H is strictly passive with finite gain, then the closed-loop system is L_2-stable:

$$\{u_d, y_d\} \in L_2 \Rightarrow \{y, u\} \in L_2$$
Kinematics

payload position:

\[\rho = \mathcal{F}_1(\theta_1, q_{e1}) = \mathcal{F}_2(\theta_2, q_{e2}) \]

payload velocity:

\[
\dot{\rho} = J_{1\theta}(\theta_1, q_{1e})\dot{\theta}_1 + J_{1e}(\theta_1, q_{1e})\dot{q}_{1e} \\
= J_{2\theta}(\theta_2, q_{2e})\dot{\theta}_2 + J_{2e}(\theta_2, q_{2e})\dot{q}_{2e}
\]
The joint torques are determined from $\hat{\tau}$:

$$\tau = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} C_1 J_{1\theta}^T \\ C_2 J_{2\theta}^T \end{bmatrix} \hat{\tau}$$

C_1 and C_2 with $0 < C_i < 1$ and $C_1 + C_2 = 1$ are load-sharing parameters.
Modified Output

μ-tip rate:

\[
\dot{\rho}_\mu = \mu \dot{\rho} + (1 - \mu) [C_1 J_1 \dot{\theta}_1 + C_2 J_2 \dot{\theta}_2]
\]

μ-tip position:

\[
\rho_\mu(t) = \mu \rho(t) + (1 - \mu) [C_1 F_1(\theta_1, 0) + C_2 F_2(\theta_2, 0)]
\]

For \(\mu = 1 \), \(\rho_\mu = \rho \)

For \(\mu = 0 \), \(\rho_\mu = C_1 F_1(\theta_1, 0) + C_2 F_2(\theta_2, 0) \)
Passivity Results

This system is passive for $\mu < 1$ when the payload is large, i.e.,

$$\int_0^\tau \dot{\rho}_\mu^T(t) \hat{\tau}(t) \, dt \geq 0, \quad \forall \tau > 0$$
Large Payload Motion Equations I

Rigid task-space equations:

\[M_{\dot{\rho}} \ddot{\rho} + C_\rho(\rho, \dot{\rho}) \dot{\rho} = \ddot{\tau} \]

PLUS

Elastic equations consistent with a cantilevered payload.
Large Payload Motion Equations II

Including only the payload mass properties:

\[
\begin{align*}
M\ddot{\nu} + \nu^\otimes M\nu &= P^{-T}(\rho)\hat{\tau} \\
W(\dot{\nu}, \nu, \nu)a
\end{align*}
\]

where

\[
M = \begin{bmatrix}
 m1 & -c^x \\
 c^x & J
\end{bmatrix}, \quad \nu = \begin{bmatrix}
 v \\
 \omega
\end{bmatrix},
\]

\[
\nu^\otimes = \begin{bmatrix}
 \omega^x & O \\
 v^x & \omega^x
\end{bmatrix}, \quad P = \begin{bmatrix}
 C_{M0}(\rho) & O \\
 O & S_{M0}(\rho)
\end{bmatrix}
\]

\(W\) is the regressor.
\(a\) is a column of mass properties.
Note: \(\nu = P(\rho)\dot{\rho}\)
Key Definitions

desired trajectory: \(\{ \rho_d, \dot{\rho}_d, \ddot{\rho}_d \} \)

tracking error:
\[
\tilde{\rho}_\mu = \rho_\mu - \rho_{\mu d}, \quad \rho_{\mu d} = \rho_d
\]

filtered error:
\[
s_\mu = \tilde{\rho}_\mu + \Lambda \tilde{\rho}_\mu, \quad \Lambda = \Lambda^T > 0
\]

If \(s_\mu \in L_2 \), then \(\tilde{\rho}_\mu \to 0 \) as \(t \to 0 \).

body-frame ‘desired’ trajectory:
\[
\nu_d = P(\rho) \dot{\rho}_d
\]

body-frame ‘reference’ trajectory:
\[
\nu_r = \nu_d - P(\rho) \Lambda \tilde{\rho}_\mu
\]
The Adaptive Controller I

control law:

\[\tau = P^T W(\dot{\nu}_r, \nu_r, \nu) \hat{a}(t) - K_d s_{\mu} \]

\[= P^T [\hat{M} \dot{\nu}_r + \nu_r \otimes \hat{M} \nu] - K_d [\dot{\tilde{\rho}}_{\mu} + \Lambda \tilde{\rho}_{\mu}] \]

adaptation law:

\[\dot{\hat{a}} = -\Gamma W^T(\dot{\nu}_r, \nu_r, \nu) P(\rho) s_{\mu}, \]

\[\Gamma = \Gamma^T > 0 \]
The Adaptive Controller II

\[-P^T W a + \hat{\tau} - \hat{\tau}_d \]

\[-P^T W \hat{a} \]

\[P^T W \]

\[W^T P \]

\[G \]

\[K_d \]

\[\Gamma^1_s \]

\[s_\mu \]
Experimental Apparatus
Closed-Loop Configuration
Mode Shapes
PD Feedback Alone \((C_1 = C_2 = 0.5, \mu = 0.8)\)
Nonadaptive Results \((C_1 = C_2 = 0.5)\)
Adaptive Results

- x-pos (m) error vs. time
- y-pos (m) error vs. time
- z-orientation (rad) vs. time

For different values of C_1: $C_1 = 0.25$ and $C_1 = 0.75$. The graphs show the error in position and orientation over time for each value of C_1. The fixed parameter graphs and those with different C_1 values are indicated with different markers.
Parameter Estimates

mass (kg) vs. time

- estimate
- payload value

c_y (kg-m) vs. time

J_zz (kg-m^2) vs. time
Summary of Presentation

- Passivity-based adaptive control: μ-tip rates + load-sharing

- Adaptive feedforward depends only on “payload equations”

- Robust since passivity depends only on a large payload

- Results exhibit good tracking