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Abstract

This paper presents an adaptive control scheme for the
four legged walking machine BISAM. The task of the adap-
tive control is to learn sensor based reflexes for posture con-
trol. For this purpose, an incremental learning scheme is de-
veloped based on reinforcement learning. For the planned
trajectory of the CoM the data taken from a goat are chosen
as a basis, to investigate the transfer potential of biological
locomotion to machine motion at this control level.

1. Introduction

Online learning methods for legged robots are inves-
tigated to enlarge the flexibility and the adaptivity to
different environments, but their use on real walking
machines is very complicated due to the high com-
plexity of such robots and only in a few approaches
realized. In [8] the leg coordination of a simple six
legged walking machine is learned, in [5] the coordina-
tion of different behavior controllers for a four legged
walking machine is learned. [1] and [7] show two ap-
proaches for online learning of biped robots are pre-
sented in which the control architecture consists of pe-
riodic central pattern generators and peripheral con-
trollers for behaviors like posture control. All these
approaches show that an appropriate representation of
the control problem is crucial for an efficient and suc-
cesful learning process a point that also account the
security requirements of real robots.

2. The Walking Machine BISAM

BISAM (Biologically InSpired wAlking Machine)
consists of one main body, four equal legs and a head
(figure 1). The main body consists of four segments,
which are connected by five rotary joints. With the five
active degrees of freedom of the body, namely rotation
of shoulder and hip, the body supports the stability and
higher flexibility in uneven terrain. Each leg consists

of four segments, that are connected by three paral-
lel rotary joints and attached to the body by a fourth.
The joints are all driven by DC motors and ball-screw
gears. The height of the robot is 70 cm, its weight
is about 23 kg. A more detailed description of the
mechanical construction and the hardware architecture
can be found in [2].

Figure 1: Photograph of the quadrupedal walking machine
BISAM in mammal-like position. Due to the five active de-
grees of freedom in the trunk and the ability to rotate the
shoulder and pelvis, the machine realizes key elements of
mammal-like locomotion.

3. Control Approach

Based on a classical robotic approach, to determine the
joint trajectories by inverse kinematics and pregiven
body motion and foot trajectories a statically stable
walk (� = 0:8) and a dynamically stable trot (� = 0:6)
is realized. Special charateristic of the motion is the



hip and shoulder movement, which realize an increase-
ment of the step length.

By analysing this movements following problems
have been identified:

� Because of the small feet of BISAM the ZMP-
Criterion [9] is not fully adequate for the opti-
mization of movements.

� The movements of BISAM are highly dependent
of the load on the machine (camera head, internal
PC) and the initial position of CoM.

� In dependency of the machine configuration all
working points have to be tuned manually

Figure 2: Small Support Area for dynamically stable move-
ments of BISAM.

During animal-like motions with extended excur-
sions not only of the limbs, but with also intense move-
ments of the spine, no simple stability-criterion is de-
finable taking into account the influences of load distri-
bution and initial posture effects. The virtual-leg-mode
does not yield closed solutions. A dynamic forward
model of the machine at present lacks sufficient infor-
mations on the non linear-effects describing the behav-
ior of drive and sensors.

Caused by the described problems we choose the
strategy to determine a planned trajectory for the CoM
and to learn adaptive reflexes which realize the correc-
tions of the guidance of CoM based on the signals of
the foot sensors.

For the modelling of the planned body trajectory,
we do not use an analytical optimization criterion but
we investigate the use of pregiven CoM-trajectories,
which are observed from mammals.

4. Analysis of CoG Trajectory

The CoG Trajectory is analysed in to components on
the base of the foot sensors according equations 1, 2

and figure 3.
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Figure 3: Illustration of the parametersSCMX andSCMY

for the sensor based measurement of the COG based on the
foot sensors.

SCMX =
FFL + FFR � (FRL + FRR)P

Fxy2F
Fxy

(1)

SCMY =
FFR + FRR � (FFL + FRL)P

Fxy2F
Fxy

(2)

A typical CoG-Trajectory for a trot with�=0.6 is
shown in figure 4.

The description and adaption of the gait on the hand
of the CoG-Trajectory have two main advantages:

� The description and of the gait on the hand of the
CoG-Trajectory is apprpiate, because the move-
ment experiments show that a right position of the
CoG is an fundamental requirement for executing
accurate movements

� This representation allows small input and output
dimension for the neural networks presented in
the next section

5. Learning of reflexes for posture con-
trol

For the online learning of the sensor based reflexes for
posture control a reinforcement learning method [6]
based on an actor/critic approach similar to the SRV-
Algorithm [4] is used. This algorithm consists of a
critic element which renders an internal evaluation of
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Figure 4: Illustration of a CoG-Trajectory gained by executing a trot with�=0.6. The CoG-Trajectory with the components
SCMX andSCMY in dependence of the gait phases can be seen.

the actual state and action elements which determines
the next control values. In each control step an adapta-
tion of both components by the TD(�)-algorithm takes
place.

The state space representation used by the learn-
ing method is incrementally constructed with self-
organizing RBF-networks. The RBF-net builds local-
ized receptive fields which divide the input space into
regions of limited size thus allowing localized learning
of a function within the boundaries of such a region.
This property makes RBFs a suitable tool for online
function approximation. In [6] a method is described
by which the topology of the RBF network can be con-
structed according to the learning task.

A critical aspect for online learning processes is the
problem modelling with the state and action space. We
choose the the level of posture control to realize an
adaptive component,

Based on this learning method a learning architec-
ture for incremental learning of the following posture
control aspects is developed (Figure 5).

� search for appropriate initial positions

� defined translations of CoM

� adaptive posture reflexes

6. Outlook

Our future work is analyse, in which way the CoG-
Trajectories of BISAM can be compared with trajecto-
ries of small and medium-sized mammals. Another in-
teresting question is, to which extend rules can derived
from the analyses of the mammals for the locomotion
of BISAM.

The biological paragon is derived from a huge kine-
matical and dynamic data base taken on 14 species of
small and medium-sized mammals [3]. Techniques
applied to determine kinematics were cineradiogra-
phy (150 frames/sec), high-speed-video (up to 1.000
frames/sec) and marker-based motion analysis (up to
1.000 frames/sec). Ground-reaction forces GRF were
taken using Kistler force-plates. The trajectory of CoM
in several gaits was derived by two methods:

� ”’balancing”’ of a multi-segmental model fitted
into the outlines of the animal. The triangular fi-
nite elements were weighted by mass data taken
from dissected cadavers or CT-, MRI- or surface-
light laser scans.

� Integration of GRF.

After matching of these data representative points for
CoM could be derived. Since the deformations of the
body stem are the less the larger the animal is, as a
paragon for the control of BISAM the trajectories of
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Figure 5: The concept of the adaptive component. The net-
work generates the internal evaluation and prototypical ac-
tions. For exploration purposes, stochastic offsets are added
to these actions. The stochastic offsets are generated using a
normal distribution. The variance of this distribution is deter-
mined by the current performance of the net. The executed
action sequence caused an external reward. The adaption of
the internal evaluation and the action units are based on the
successive external and internal evaluations.

CoM of two sub-species of goats were chosen. The
kinematical data provided contained informations on
the motions of the CoM and the hoofs in walk, trot and
bound.

7. Conclusion

The aim of this work is to investigate, to which ex-
tend biological data on trajectories of the CoM from
mammals can be used as basis for a four-legged walk-
ing machine. To adapt this planned motion to differ-
ent circumstances, posture control reflexes are learned
with an online learning method based on reinforcement
learning.
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