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A biped mode is andysed and its relevant second order differential equation of motion are
obtained using the Lagrange or the Kane formalism. Previous studies by McGeer [1], Goswani &
a. [2], Garcia& d. [3], and others have been very helpful in the understanding of bipedal passive
locomotion under gravity aone. This is an attempt to go somewhat further in the same direction:
a biped moving on a level surface under the influence of impulsive forces. A four d.o.f. modd is
studied in the sagittd plane over a visco-elastic medium. A two d.o.f. mode with one foot fixed
to a rigid floor is aso investigated in order to get closed form results. With proper initial
conditions, impulses and torques, the programme is able to numerically provide a solution, which
lasts for many consecutive steps, leading to steady and stable limit cycles in angular velocities.
An animation programme has been proven useful in showing such sequences. The problem
addressed here is how to compute the vaue of the feet impulses and the corresponding torque
amplitude in order to attain agiven gait velocity and maintain arepeatable gait pattern.

Model description: The mode is shown in Figure 1. It consists of two rigid segments
representing the left and the right leg with mass Ma located at mid length and a central moment
of inertia la. The trunk is assumed as a point mass Me located at E. Figure 1 shows the right leg
resting on the floor while the left is subject to a short impulse directed aong the segment.
Afterward, an interna torque Tga is applied to the Eft leg. A sSmilar reversed scenario occurs on
the following step, with a torque Tab applied to left leg The Lagrange equations for the two d.o.f
modd walking on arigid surface are represented in Equation (1):
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where A is a 2x2 matrix; g and U, are the state variables; (i = 1,2), K3, and K2 are the required
impulses for either leg; U1 and Uz are the time derivatives of qu and ¢p. The matrix A consists of
four dements &; with

a=(/ML? +Y) a12 = -cos(qu-0p2) / 2

Q1= a2 a2 = (I/IML* +5/4 +Me/M)

f1(g;,U) = 0.5 sin(op-02)Uz2 + 0.5 G/L cos(ap) + TedML?

fo(gi,U) = - 05 9n(q1-0p)Us2 + (M/M +3/2) GIL cos(p) - Te/ML?

¢ =sSn(g:-g2)/ML or O Cz =9n(p-g2)/ML or O
The determinant. det(A) = a118p2-842 &1 and a2 =ap1 has oneterm a2 which is very dightly
co-ordinate dependant.
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G is the constant of gravity, assumed to be 10m.s. Similar expressions are obtained when
interchanging the angular leg generalised co-ordinates g ad gz, and using Ty in place of Ty,
when the left leg is in the support mode and the right leg is in the swinging mode. These
equations are used to derive some basic relationships between the torque, the impulse and the
kinematics of the walking gait patten. The system is solved numerically using Runge-Kutta
algorithm. The code is provided with branching in order to generate a set of multi-step sequences.
Ground interference with the swinging leg is ignored except at contact time where ground
reaction forces are evaluated. Such a system has the advantages of producing continuous motion
from one step to another by simple branching and constants resetting, as the model goes from one
configuration to the next.

Impulse: During the pushoff phase in human gait, the foot reacts againgt the ground to produce
a reaction force. Its integral over time is known as an impulse. During that phase, the legs are
changing angular velocities and the body is rising. The smplest form of an impulse is a force
amplitude Fmp applied over a single time step. The integration of (1) over a short impulse time
results in a sudden increase in the angular velocities of al the generalized velocities of the system.
For the present modd the relaionship is given in Equation (2).
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The angular velodity increments are seen to be function of the impulse vaue. Thereefter, a
properly sdected torque Ty Will acoderate and bring the swinging leg to an eventud maximum
veodty vy, ad in phase with the support leg & mid-stance. To thisend, we investigate the
eguations[1] with anull valuefor theimpulse and find out thet f; in the second equetion is
relaivey smdl. Conddering furthermore amall angles goproximations, the expresson for the
derivative dU/dt becomes

dUs/dt =a( g1 — gz ) Ui? +b( p/2-ap) + CTa ©)

U, can be shown to be increasing in a nearly linear manner with time and to be proportional to
Tea. Therefore the above equation takes the form
oo/ = c1 +C2 o + g(t) + Cat® 2 (4)

This equation is linear and a power solution for ¢ may be found by the method of variable
coefficients. From this solution, the time tus required to reach mid-stance (g2=p/2) and the
velocity a mid-stance W(tus) may be obtained. These values are functions of Ty and of the
values U, and U immediately following the impulse. These U vaues have just been given
angular velocities increments which are fonction of the impulse intensity. Therefore it is possible
to establish arequired initial impulse and a proper torque amplitude that will yield a synchronised
gance for a given velocity at mid-stance. Examples of such solutions and corresponding
animations will be shown in the presentation. After applying the initial impulse, Fmg is taken as
zero until the next step occurs and equation (1) is than easily inverted. The synchronised mid-
stance angles and velocity objectives may also be expressed by algebraic equations which may be
solved numericaly by Newton Raphson agorithm and aso by repeated integration.



Polynomial solution: The angles gp and ¢ range from 70 to 110 degrees approximately and
approximations may be taken for linearization purposes. Replacing in equation (1) sin(gl-g2) by
(g2-92) , cos(g1-g2) by 1, det(A) becomes a constant and the expressions on the right hand side
take the following form:

f1 = 0.5(01-02) W2 +G/2L +Ti/ML2
fo=- 5(01-0p) Us® (Mo/M+3/2) G /2L -Tpe/ML 2 (6)
The torque T Will be taken as a congtant during the first part of the walking step until mid-

stance. After mid-stance, a change of sign for T, Will be introduced in the simulation that will
dow down the fast moving leg. We may rewrite the sysem as

dUL/dt = [(all.flg—al2.f2g) +(a22+al2) T u]/detA
dU2/dt = (-al2f 1g+al1f2g) - (al1+al2) T’ af/detA @)

Figure 1. Polynomial Solution g2p(t) vsintegrated solution g2(t)
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Angular co-ordinate g2

The eguations may be uncoupled when observing during smulation that the term including the
torque T in the first differential equation is dominant. This results into dU1/dt = Tp/le Where | =
la +M L? and represents the leg moment of inertia around the hip pivot point. Therefore U(t) =
Ur( 0) +(Tha/le)t and au(t)=ga( 0 ) +Ui( 0 )t + 0.5(Tke/le). This simple solution has been verified
with sufficient accuracy for the cases at hand. The quadratic form may be solved to find out the
time t;ms a which the swinging leg will reech averticd postion.

tims=-b +((b?-c) whereb=(1/Tee)U1(0) and ¢ = [(20n(0) - p/2] le/ T )



where the plus sign must be assumed in front of the square root. In the second differentia
equation, the term aofig is small compared to the others terms and the replacement of U(t)
produces atime dependent linearized eqution of the form

P/ = dUo/dt=eptert+et? + est® +eyt* + (65 +egt +erf? )qp ©)

where the expressions for @ to & are given in the gppendix. This linearized, time dependant
differentid equation may be solved usng a polynomid solution for ¢p in powers of t.

op = bo + bat + bpt® +......+bnt" and
Us = by + 2bot + 3b38 +..... ()b t” (10)
dUy/df? = 1®2hy, + 2®3hst + 3®4ut? +.....(n+H1)* (N+2)bpeot”

The replacement of these polynomial into the differential equation yields a polynomial int'. Each
coefficient must be zero to give the recurrent expressions for the b coefficients in terms of the
initia conditions and in terms of the known g coefficients. These are asfollows

Po=02(0) b1=U2(0) b2=(eo+esho)2 Is=(e1+esho+eshn)/2®3

by = (& terby + egby + e510,)/3®4 s = (e3 + e7by + eghy + esbs )/4®5 (11)
bs = (&4 + e7bp + eghs + ey )/5®6 by = (e7bs + esba + esbs)/6®7

bhi2 = (€7bn-2 + €sbn1 +esbn)/(N+1) &(n+2)

This polynomial solution for the leg angular co-ordinate and for its angular velocity has shown to
be a very good approximation for the integrated numerical solution using Runge-Kutta algorithm,
for cases where the balancing leg is reaching a vertical position at approximately the same time
asthe supporting leg Fgure 2).

Discussion and conclusion: The generated gait cycles comprise a multitude of continuous steps
accompanied by steady and stable limit cycles in angular velocities. The relationships between
the impulse, the torque, the model parameters and initial conditions pave the way to a better
understanding and smulation. Animation is found to be a very useful tool in order to assess the
progress made during the whole development. Further refinements are required in order to
broaden the stability range of successful gait solutions. An approximate solution to the linearized
st of differential equations provide some important relationships between the model variables at
impulse time, its parameters and the values of the impulse and of the constant torque in order to
achieve a continuous and repeetable gait cyde with adesired mid-stance velocity.
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