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A biped model is analysed and its relevant second order differential equation of motion are 
obtained using the Lagrange or the Kane formalism. Previous studies by McGeer [1], Goswani & 
al. [2], Garcia & al. [3], and others have been very helpful in the understanding of bipedal passive 
locomotion under gravity alone. This is an attempt to go somewhat further in the same direction: 
a biped moving on a level surface under the influence of impulsive forces. A four d.o.f. model is 
studied in the sagittal plane over a visco-elastic medium. A two d.o.f. model with one foot fixed 
to a rigid floor is also investigated in order to get closed form results. With proper initial 
conditions, impulses and torques, the programme is able to numerically provide a solution, which 
lasts for many consecutive steps, leading to steady and stable limit cycles in angular velocities. 
An animation programme has been proven useful in showing such sequences. The problem 
addressed here is how to compute the value of the feet impulses and the corresponding torque 
amplitude in order to attain a given gait velocity and maintain a repeatable gait pattern.  

 

Model description: The model is shown in Figure 1. It consists of two rigid segments 
representing the left and the right leg with mass MA located at mid length and a central moment 
of inertia IA. The trunk is assumed as a point mass Me located at E. Figure 1 shows the right leg 
resting on the floor while the left is subject to a short  impulse directed along the segment. 
Afterward, an internal torque TBA is applied to the left leg. A similar reversed scenario occurs on 
the following step, with a torque Tab applied to left leg The Lagrange equations for the two d.o.f 
model walking on a rigid surface are represented in Equation (1): 
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where A is a 2x2 matrix; qi and Ui, are the state variables; (i = 1,2), Fi1, and Fi2 are the required 
impulses for either leg; U1 and U2 are the time derivatives of q1 and q2. The matrix A consists of 
four elements aij with 
 

 a11 = (I / ML2  + ¼ )     a12 = -cos(q1-q2) / 2 
 a21 = a12 a22 = (I/ML2 +5/4 +Me/M) 
 f1(qi,Ui) =   0.5 sin(q1-q2)U2

2 + 0.5 G/L cos(q1) + Tba/ML2
  

 f2(qi,Ui) = - 0.5 sin(q1-q2)U1
2 + (Me/M +3/2 ) G/L cos(q2) - Tba/ML2 

 c1 = sin(q1-q2)/ML or 0 c2 = sin(q1-q2)/ML or 0 
The determinant. det(A) = a11a22-a12 a21 and a12 =a21  has one term a12 which is very slightly 
co-ordinate dependant.         
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G is the constant of gravity, assumed to be 10m.s-2. Similar expressions are obtained when 
interchanging the angular leg generalised co-ordinates q1 and q2, and using Tab in place of Tba, 
when the left leg is in the support mode and the right leg is in the swinging mode. These 
equations are used to derive some basic relationships between the torque, the impulse and the 
kinematics of the walking gait pattern. The system is solved numerically using Runge-Kutta 
algorithm. The code is provided with branching in order to generate a set of multi-step sequences. 
Ground interference with the swinging leg is ignored except at contact time where ground 
reaction forces are evaluated. Such a system has the advantages of producing continuous motion 
from one step to another by simple branching and constants resetting, as the model goes from one 
configuration to the next. 
 

Impulse: During the push-off phase in human gait, the foot reacts against the ground to produce 
a reaction force. Its integral over time is known as an impulse. During that phase, the legs are 
changing angular velocities and the body is rising. The simplest form of an impulse is a force 
amplitude Fimp applied over a single time step. The integration of (1) over a short impulse time 
results in a sudden increase in the angular velocities of all the generalized velocities of the system. 
For the present model the relationship is given in Equation (2). 
 

            (2) 
 
 
The angular velocity increments are seen to be function of the impulse value. Thereafter, a 
properly selected torque Tba will accelerate and bring the swinging leg to an eventual maximum 
velocity vm and in phase with the support leg at mid-stance.  To this end, we investigate the 
equations [1]  with a null value for the impulse and find out that f1 in the second equation is 
relatively small. Considering furthermore  small angles approximations, the expression for the 
derivative dU2/dt becomes 

dU2/dt = a ( q1 – q2 ) U1
2  +b( π/2-q2) + cTBA                   (3)       

 

U1 can be shown to be increasing in a nearly linear manner with time and to be proportional to 
TBA. Therefore the above equation takes the form  
                  d2q2/dt2 = c1 + c2 q2 + g(t) + c3t2 q2                                                        (4) 
 

This equation is linear and a power solution for q2 may be found by the method of variable 
coefficients. From this solution, the time tMS required to reach mid-stance (q2=π/2) and the 
velocity at mid-stance U2(tMS) may be obtained. These values are functions of Tba and of the 
values U1+ and U2+ immediately following the impulse. These Ui values have just been given  
angular velocities increments which are fonction of the impulse intensity.  Therefore it is possible 
to establish a required initial impulse and a proper torque amplitude that will yield a synchronised 
stance for a given velocity at mid-stance. Examples of such solutions and corresponding 
animations will be shown in the presentation. After applying the initial impulse, Fimg is taken as 
zero until the next step occurs and equation (1) is than easily inverted. The synchronised mid-
stance angles and velocity objectives may also be expressed by algebraic equations which may be 
solved numerically by Newton  Raphson algorithm and also by repeated integration. 
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Polynomial solution: The angles q1 and q2 range from 70 to 110 degrees approximately and 
approximations may be taken for linearization purposes. Replacing in equation (1) sin(q1-q2) by 
(q1-q2) , cos(q1-q2) by 1, det(A) becomes a constant and the expressions on the right hand side 
take the following form: 
 

 f1 = 0.5(q1-q2) U2
2 +G/2L +Tba/ML2  

 f2=-.5(q1-q2) U1
2 –(Me/M+3/2) G /2L -Tba/ML2

     (6) 
 

The torque Tba will be taken as a constant during the first part of the walking step until mid-
stance. After mid-stance, a change of sign for Tba will be introduced in the simulation that will 
slow down the fast moving leg. We may rewrite the system as 
 

 dU1/dt = [(a11.f1g –a12.f2g) +(a22+a12)T’ab]/detA 
 dU2/dt =[(-a12f1g+a11f2g) -(a11+a12)T’ab]/detA     (7) 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations may be uncoupled when observing during simulation that the term including the 
torque Tba in the first differential equation is dominant. This results into dU1/dt = Tba/Ie where Ie = 
Ia +M L2 and represents the leg moment of inertia around the hip pivot point. Therefore U1(t) = 
U1( 0 ) +(Tba/Ie)t and q1(t)=q1( 0 ) +U1( 0 )t + 0.5(Tba/Ie)t2. This simple solution has been verified 
with sufficient accuracy for the cases at hand. The quadratic form may be solved to find out the 
time t1ms at which the swinging leg will reach a vertical position.  

 

 t1ms = -b +√(b2-c)  where b=(Ie/Tba)U1( 0 ) and c = [(2q1( 0 ) - π/2] Ie/ T ba   (8) 
 

Figure 1: Polynomial Solution q2p(t) vs integrated solution q2(t)
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where the plus sign must be assumed in front of the square root. In the second differential 
equation, the term a12f1g is small compared to the others terms and the replacement of U1(t) 
produces a time dependent linearized equation of the form  
 

 d2q2/dt2 = dU2/dt=e0+e1t+e2t2 + e3t3 +e4t4 + (e5 +e6t +e7t2 )q2   (9) 
 

where the expressions for e0 to e7 are given in the appendix. This linearized, time-dependant 
differential equation may be solved using a polynomial solution for q2 in powers of t. 
 

 q2 = b0 + b1t + b2t2 +……+bntn   and 
 U2 = b1 + 2b2t + 3b3t2 +…..+(n+1)bn+1tn       (10) 
 dU2/dt2  = 182b2 + 283b3t + 384b4t2 +…..(n+1)*(n+2)bn+2tn  
 

The replacement of these polynomial into the differential equation yields a polynomial in ti. Each 
coefficient must be zero to give the recurrent expressions for the bi coefficients in terms of the 
initial conditions and in terms of the known ei coefficients. These are as follows: 
 

 bo = q2(0)    b1 = U2 (0)   b2 = (e0 + e5bo)/2     b3 = (e1 + e6bo + e5b1)/283 
 b4 = (e2 +e7bo + e6b1 + e5b2)/384      b5 = (e3 + e7b1 + e6b2 + e5b3 )/485    (11) 
 b6 = (e4 + e7b2 + e6b3 + e5b4 )/586    b7 = (e7b3 + e6b4 + e5b5)/687 
 bn+2 = (e7bn-2 + e6bn-1 +e5bn)/(n+1)8(n+2) 
 

This polynomial solution for the leg angular co-ordinate and for its angular velocity has shown to 
be a very good approximation for the integrated numerical solution using Runge-Kutta algorithm, 
for cases where the balancing leg is reaching a vertical position at approximately the same time 
as the supporting leg Figure 2). 
 
Discussion and conclusion: The generated gait cycles comprise a multitude of continuous steps 
accompanied by steady and stable limit cycles in angular velocities. The relationships between 
the impulse, the torque, the model parameters and initial conditions pave the way to a better 
understanding and simulation. Animation is found to be a very useful tool in order to assess the 
progress made during the whole development. Further refinements are required in order to 
broaden the stability range of successful gait solutions. An approximate solution to the linearized 
set of differential equations provide some important relationships between the model variables at 
impulse time, its parameters and the values of the impulse and of the constant torque in order to 
achieve a continuous and repeatable gait cycle with a desired mid-stance velocity.  
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