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Information-theoretic approach to sensor selection

Ugurcan Mugan'!*, Malcolm A. Maclver'?3** Michael Peshkin?***
*umugan@u.northwestern.edu, **maciver @northwestern.edu, *** peshkin @northwestern.edu
! Department of Biomedical Engineering, Northwestern University, USA
2 Department of Mechanical Engineering, Northwestern University, USA
3 Department of Neurobiology, Northwestern University, USA

1 Motivation

It is important to be able to explore and estimate target
state by using distributed sensing. For such sensing tasks
not all measurements are equally informative. Therefore,
for large sensor networks the relevant data can either be ex-
tracted by removing correlated measurements in post statis-
tical analysis, or by limiting the number of selected sensors.
The first method is computationally intensive (especially for
the case of a moving target) when fast successive measure-
ments are desired. Therefore, a sensing task should employ
more sensors than necessary, and only use the ones that pro-
vide the most information. From an information-theoretic
perspective each sensor is tasked with observing the target
and reducing the ambiguity of target state. The information
gain associated to each sensor can be different if the sys-
tem is anisotropic (Fig. 1D). Therefore, repeatedly selecting
sensors that are most informative reduces the overall uncer-
tainty of the target parameters. This allows us to represent
the problem as choosing k sensors among m possible sensors
to minimize the error of estimating target state.

Several heuristic have been proposed for optimal selec-
tion of sensors. These include genetic algorithms [1], mu-
tual information [2,3], information gain maximization [4,5].
Algorithms based on these heuristics rely on selecting sen-
sors that are optimal in the next given configuration, and
therefore can only locally optimize. We propose the use of
ergodic exploration of distributed information (EEDI) [6],
which compares the statistics of selected sensors to a map
of expected information density.

We test the proposed selection algorithm on a system
that uses electrosense with an array like distribution of
sensors between the emitters (Fig 1A), modeled after the
weakly electric fish Apteronotus albifrons. We show in sim-
ulation that given an object by iteratively selecting sensors
we can localize a sphere of known radius and z-coordinate
in an x,y workspace.

2 Sensor Selection Heuristic and Control

An array of sensors allows us to mimic the sensor distri-
bution of the electric fish. Due to fourth power signal falloff,
for distant objects, signals at adjacent electrodes are strongly
correlated. However, for nearby objects, local sensor density

The 8th International Symposium
on Adaptive Motion of Animals and Machines(AMAM2017)

is important, and the peripheral array can largely be ignored.
This is exemplified in Fig. 1C which shows the perspective
of each sensor for all possible target locations. Therefore,
sensor placement and choice determines the amount of in-
formation that can be obtained about target parameters.

Two conductors act as voltage emitting electrodes, and
in between them there are sixteen evenly distributed sen-
sors in a grid structure, with high input impedance to neglect
flowing currents. Out of the sixteen sensors, four are chosen
with predefined constraints, which limits the possible num-
ber sensor of configurations.

2.1 Idealized Model

We considered an idealized 3D model for the observed
voltage perturbation created by a conductive sphere of
known radius a (Eq. 2). If we let E¢ be the electric field
vector at the location of the target, r € R? represent the
target-centered relative coordinates, then we can represent
the change in potential §V (mV) as:
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where oy, & is the conductivity and permittivity of the
sphere, respectively. Similarly, o,,, &, refers to the conduc-
tivity and permittivity of the medium, respectively.

2.2 Sensor Selection Algorithm

For selecting sensors we use ergodic exploration of dis-
tributed information algorithm, which compares the statis-
tics of a search trajectory to the expected information den-
sity [6]. A trajectory is generated such that the majority of
the time is spent in high information locations. This also
allows for the exploration of regions that have low infor-
mation content. In the case of incorrect expected informa-
tion density, methods that employ information maximization
are more likely to fail since instead of exploration they use
exploitation. By combining both search strategies we are
able to use a robust sensor selection algorithm while disam-
biguating the localization problem.
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Figure 1: A The simulated array and object. B, C Expected in-
formation density and probability density function of a
target placed at the center with low variance. D Sen-
sor measurements for all possible object locations in a
gridded x,y plane. E Iteratively chosen sensors and the
measurements from each sensor. Light orange corre-
sponds to the first set and Dark red corresponds to the
last set.

For the given electrosensory array we assume a conduc-
tive sphere of radius 5 mm located at z = 3 cm. An initial
sensor location and joint probability distribution p(®) of pa-
rameters ® are chosen. If no prior knowledge about target
state exists, p(®) is initialized to be uniform on a bounded
domain. Bayesian filter is used to update the target state be-
lief based on sensor measurements, ideal model, and noise
estimates. In order to calculate the expected information
density (EID) we calculate the expected Fisher information
matrix, which is the expected value of the Fisher information
with respect to the joint belief p(®) for pairs of parameters.
We set the EID to be the determinant of the expected Fisher
information matrix, based on the D-optimality metric [7].
Fig. 1C shows the belief (p(®)) and EID for a target located
at the center for low variance.

Ergodic trajectory [6] is calculated without the use of
any kinematics for the sensor selection problem. The gen-
erated trajectory is then mapped onto to k available sensors.
The k sensors are closest (Euclidean metric) to the trajectory,
most informative (based on the EID), and unconstrained.

Measurements collected by these sensors are then used to
update the belief p(®) and EID, which are used to gener-
ate the next trajectory. The algorithm terminates when the
norm of the standard deviation of the estimate falls below
0.03. Fig. 1D shows and example of sensor choices and
measurements given a target centered at x,y = (0,0)

3 Discussion

For a sensing task, not all measurements are equally in-
formative. In the case of electrosense, due to fourth power
signal falloff with distance, each object location and ge-
ometry will have a different set of most informative elec-
trodes. Here we provide an algorithm which can be used
for either sensor placement or sensor selection, to optimize
both exploitation of information gain, and exploration of
workspace. We use an electrosensory system to test the ef-
fectiveness of the algorithm. Under high variance, we show
that we are able to localize the object with successive sensor
measurements.
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