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Abstract: In a previos work, we proposed a very simple stochastic model, termed Minimalistic Behavioral Rule, in order
to show how small bacteria such as Escherichia coli can robustly reach high concentrations of nutrient despite the noise
in the sensory information. In particular, we showed that when this simple behavioral rule is employed, environmental
or internally generated noise can be beneficial to the resultant behaviors of the living being, a phenomenon that can be
explained by Stochastic Resonance. In this paper, we apply such behavioral rule to a real world complex robot, whose
behavior is strongly influenced by its morphology and its surroning environment. Through the experiments, in particular,
we show that the sensory information used for the task achievement greatly influences the resultant behavior.
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1. INTRODUCTION

Living things can survive in complex and dynami-
cal environments by taking full advantage of their body
dynamics, sensing and interaction with the surrounding
environments. Small bacteria such as Escherichia coli
(E. coli) are no exception. In a previous work, we pro-
posed a Minimalistic Behavioral Rule (MBR) in order
to explain how E. coli can effectively reach high con-
centrations of nutrients and avoid high concentrations of
repellent substance despite highly noisy sensory infor-
mation[1]. Since MBR is extremely simple and makes
very limited assumptions, it can be easily applied with-
out knowing the robot’s body structure or its actuators
properties. Experiments showed that MBR can control
simple mobile robots with no information on its actuators
and sensors [2]. However, to date, MBR was not tested
on complex, multi-DOFs robots.

The idea of applying a very simple control to highly
complex robots is not new. So far, many researchers have
developed biologically inspired robots [3] that can oper-
ate with simple control laws. Usually, the exploitation
of the morphological computation[4], emergent from a
well-designed robot’s body, allows the achievement of a
specific task with very simple control laws.

However, the identification of such simple control
laws requires the developer’s inspiration, knowledge and
experience. In other words, even if the control laws are
very simple, it is not easy to find them.

The ultimate goal of this research is to build a simple
but general control law which can exploit the character-
istics of the robot’s morphology automatically. We pro-
pose MBR as a possible solution for controlling a robot
when no previous knowledge on the robot’s actuators and
sensory data is available. If specific knowledge is avail-
able, clearly, task and robot specific controllers can be de-
signed to improve the system efficiency. Actually, MBR
can be used for collecting the data necessary to this de-
velopment process.
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Fig. 1 The complex musculoskeletal robot arm used in
the experiment.

In this paper, we show that MBR is applicable even
when the robot has a very complex structure. In detail,
MBR was used to control the pneumatic musculoskele-
tal robot arm shown in Fig. 1. This robot has a 7 DOFs
driven by 17 McKibben pneumatic muscles. Each mus-
cle is equipped with a pressure sensor, used for closed
loop pressure control. In other terms, the robot is con-
trolled by setting the variation of the pressure in each of
the 17 pneumatic actuators. The task chosen consists in
reaching three points in sequence. In the experiments, the
sensory information available to the robot was changed in
the experiments, to observe differences in the behavior.

2. MINIMALISTIC BEHAVIORAL RULE

In [2] we proposed the Minimalistic Behavioral Rule:
i ut +n'R if AA >0
Uppr = : ‘
otherwise

ey

random selection

Where the v} indicates the i-th component of an m-
dimensional motor command u} € R> given at time ¢
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and R ~ N(0,1) is a random variable and AA; ex-
presses how much the robot improved its conditions dur-
ing time the ¢-th timestep. For instance, in a goal reach-
ing task, A A; could express how much a robot got closer
to its target. The term 7' R indicates internal noise, that
could be generated intentionally [2] or not.

If no perturbations are introduced (ni = 0), the bi-
nary evaluation (AA; > 0) can only correspond directly
to “keeping” or “changing” the motor command. Con-
versely, if the perturbations are very strong, the motor
command corresponds to a random walk in the motor
command space. Intuitively, there is a specific noise in-
tensity that maximizes the performances. This stochas-
tic resonance phenomenonwas reported in [1], where we
showed that an optimal level of noise is able to maximize
the mutual information between the function that deter-
mines AA; and the robot behavior.

MBR is very general, in fact only the sign of AA;, and
no precise “state value” is required. Furthermore, the be-
havior generated by the rule implicitly reflects the robot’s
characteristics. In fact, since the commands are chosen
by random selection, commands that do not require a pre-
cise tuning, intuitively commands that are “simpler for
the robot”, are executed with high frequency.

3. EXPERIMENT AND RESULTS

We conducted an experiment in which the robot arm
continuously and repeatedly reaches three targets in the
robot reachable space. These targets are located at the
robot’s right, left and bottom part of the reachable space,
and have coordinates, in m, t; = (0.34,0.21,0.66),
ts = (0.24,0.02,0.62) and t5 (0.46,—0.10,0.46),
respectively. In order to calculate A Ay, it is necessary
to measure the position of the end-effector. We tested
the following three ways to measure and express the end-
effector position:

1. A four dimensional vector composed by the end-
effector centroid in the images of the two cameras
mounted on the head.

2. The three dimensional position of the end effector, ob-
tained using stereo computation.

3. A three dimensional position of the end-effector ob-
served by a motion capture system.

The task could be achieved with all the three types of
the information. This result confirms the generality of
MBR, that can be applied successfully with a variety of
input information and without requiring a model of the
robot’s dynamics. In particular, the directions taken by
the end effector when each muscle is contracted are un-
known, and the mapping between the control signal v and
the resulting A A, is very complex, depending both on the
robot structure and on the sensory information employed.

We analyzed the differences in the robot behavior
when the sensory information varies. Fig.2 shows the
reaching time for each of the three targets using each of
the sensory information. For simplicity, the robot reaches
the targets in the order 1,2,3,1,2,.... Analysis of the
effect of the reaching order will be provided in future
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Fig. 2 The reaching time [sec] for each of the targets.
The x axis indicates the sensory information type.

works. The figure reports the median values, with the
90% confidence intervals, and highlights the length distri-
butions that are statistically different by the KruskalWal-
lis analysis. We note that the task sensory information
1 and 3 lead better results than the sensory information
2. This is interesting, because the sensory information 2
and 3 are intuitively closer. In fact, for the three targets
the normalized mutual information between the sensory
information 1 and 3 is 0.73, 0.76 and 0.77, respectively,
while the mutual information between the sensory infor-
mation 2 and 3 is 0.81,0.81,0.83 and 0.80.

This result probably comes from the fact that the noise
on the depth information has more influence on AA; us-
ing the stereo computation than directly using the raw
centroid information data. More detailed analysis will be
presented in future works. Additionally, it is interesting
to investigate whether the Stochastic Resonance effect,
observed for simple 2D reaching, can be observed using
complex robots like the one presented here.
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