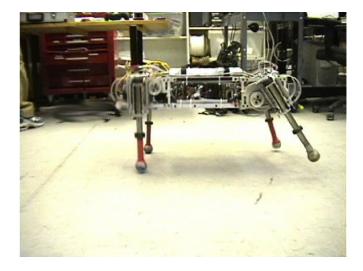
Biped robot ''MIKE'' M. Wisse and J. van Frankenhuyzen Delft University of Technology, The Netherlands http://mms.tudelft.nl/dbl

- 2D, fully self-contained
- Based on 'Passive Dynamic Walking'
- Powered with pneumatic McKibben muscles
- Walks on level floor
- Extremely simple controller: only foot-switch reflex

Biped Locomotion Robot

K.Tsuchiya, S.Aoi, K.Tsujita Graduate School of Engineering, Kyoto University


- Gait pattern control by nonlinear oscillators
- Phase of oscillator tuned by touch sensor signal of the tip of the leg
- Capable of adaptation to changing environments, locomotion speed, slope of the floor etc

The "Scout II" Quadruped Robot

James Andrew Smith, Ioannis Poulakakis and Martin Buehler Ambulatory Robotics Laboratory Centre for Intelligent Machines, McGill University

- Excitation of passive dynamics to produce stable dynamic locomotion
- One active degree of freedom per leg (rotary motor)
- One passive degree of freedom per leg (prismatic spring)
- Capable of the Bound symmetric gait
- Capable of the Half-Bound asymmetric gait

The Quadruped Robot ''Tekken-I'' Y. Fukuoka and H. Kimura University of Electro-Communications

- Autonomous adaptation to irregular terrain
- Motion generation and adaptation based on biological concepts
- CPG (Central Pattern Generator) and reflexes
- Rolling motion feedback to CPG
- All paramters are fixed for kinds of irregular terrain

Humanoid Robot "HOAP-1" (Humanoid for Open Architecture Platform #1) FUJITSU

- Open Architecture for research
- Biologically inspired approach
- CPG/NP(Central Pattern Generator / Numerical Perturbation) based motion generation
- Parameters can be changed dynamically for adaptive motion

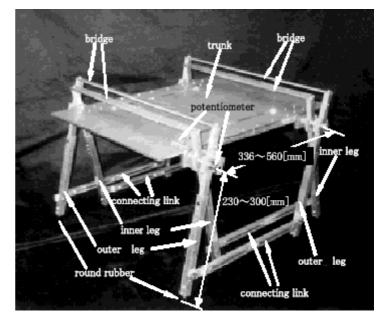
Quasi Passive Dynamic

A.Orita and K.Osuka Kyoto University

- Quasi Passive dynamic walker
- The robot has two legs
- All joints are driven by DD motors
- Propose a new walking control method using ankle joint control

Mobile Inspection Robot for Rescue Activities MOIRA

H.Kitajima and K.Osuka Kyoto University


- Mobile robot for searching a debris
- The robot has four links and three joints
- Each link has four caterpillars (up side, down side, left side and right side)
- This robot can be controlled by manual

Passive Dynamic Walker "Quartet I"

*K.Osuka and **T.Fujitani *Kyoto University, **Osaka Prefecture University

- Passive dynamic walker
- The robot has eight legs and each four legs are connected by linkages
- Show a stability of passive dynamic walk through simulations and experiments
- Show a bifurcation phenomenon in passive dynamic walk through simulations

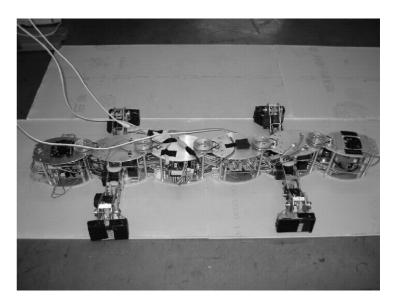
Passive Dynamic Walker ''Quartet II''

K.Osuka and K.Kirihara Kyoto University

- Passive dynamic walker
- The robot has eight legs and each four legs are connected by linkages
- Show a stability of passive dynamic walk through simulations and experiments
- Show a bifurcation phenomenon in passive dynamic walk through simulations and experiments

1998

Quasi-Passive Dynamic Walker "Quartet III" Y.Sugimoto, K.Osuka and Y.Saruta Kyoto University


- Quasi Passive dynamic walker
- The robot has eight legs and each four legs are connected by linkages
- DD Motors are mounted as actuators
- Proposed some new walking controller for quasi passive dynamic walking

1999-2001

A Salamander Robot A. Hiraoka, Z.G. Zhang and H.Kimura University of Electro-Communications

- Potential model for the salamander locomotion with limb CPGs and body CPGs proposed by A.Ijspeert[1998].
- Sensory reflex based on stretch-receptor neurons proposed by S.Grillner[1995]
- Self-contained control system based on FPGA(Field Programmable Gate Array)
- Trot walking on flat terrains of various frictions
- Swimming motion in future

