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Abstract

Since a humanoid robot takes the morphology of
human� users will intuitively expect that they can
freely manipulate the humanoid extremities when
try to control as pilots� However� it is not real�
ized with simple devices because it is di�cult to
simultaneously issue multiple control inputs to the
whole body� On the other hand� a small number
of control inputs� such as a cam in a wind�up me�
chanical doll� can generate various motion patterns
of extremities� In this sense� it is useful for mo�
tion pattern generation to get mapping functions
bidirectionally between a large number of control
inputs to a humanoid robot and a small number
of control inputs that a user can intentionally op�
erate� From a standpoint of multivariate analysis�
by executing principal component analysis �PCA�
in joint angle space� motion patterns are converted
into low dimensional variables� The problem is to
�nd such convenient variables not only for speci�c
motion like walk but also multiple whole body mo�
tion patterns� This paper presents the results that
� dimensional inputs can generate an approximate
walking pattern and � dimensional inputs does 	
types of motion patterns with hierarchical nonlin�
ear PCA �NLPCA��

�� Introduction

The production of speci�c movement like biped
walk has become realized on a humanoid robot�
However� it is still di�cult for a user as a pilot to
manipulate the extremities of the humanoid robot
freely� In order to generate motion patterns of a
humanoid robot� though we must handle at least
the same number of control variables as degrees of
freedom of joint angles� it is di�cult to issue such
a large number of control inputs to the whole body
at a time�

Motion capture system can a
ord many simulta�
neous inputs to a humanoid robot���
 on the other
hand� instead of using such large scale measure�

ment facilities� generating voluntary movement of
its extremities with a small number of control in�
puts� e�g� given by a joystick� can be alternative
techniques� As for the alternative case� robotics
has embraced the method that the user directs the
types of behavioral patterns� such as walk or raise�
its�hands� for the goodness of intuitive operabil�
ity� This method� however� is not enough �exible
for users to manipulate the humanoid extremities
freely� In the sense of �exible motion pattern gen�
eration with essential control variables� dynami�
cal approaches that manipulate ZMP like ��� and
kinematical approaches based on synergetics like
��� have been investigated� These approaches con�
sider attidude and movement of humanoid extrem�
ities as constraints to satisfy� and are di
erent from
the methodology how to generate voluntary move�
ment of humanoid extremities with fewer inputs�

For the purpose of generation of voluntarymove�
ment of humanoid extremities� our research fo�
cus on a dimensionality reduction algorithm that
forms low dimensional variables out of multivari�
ate inputs of joint angles� Since a wind�up me�
chanical doll makes the most use of geometric con�
straints on its linkage� the movements of joints are
entrained to the workings of one cam� By look�
ing at the correlation among joint angles� if the
structure of the cam that produces the correlation
are to be estimated from data� various motions
of extremities can be generated by controlling re�
duced valuables� such as rotating the cam� rather
than inputting original number of joints� From a
viewpoint of multivariate analysis� principal com�
ponent analysis �PCA� is useful in order to esti�
mate the data structure which has signi�cant cor�
relation and convert the data into representative
variables in lower dimension� Therefore� by apply�
ing PCA to the joint angle space where each joint
angle forms a basis� the low dimensional control
variables can be obtained that provide multivari�
ate inputs to the whole body of humanoid robot�
Then a nontrivial problem is to �nd such variables



for not only single motion pattern but also mul�
tiple motion patterns� At this time� conventional
PCA is not enough for dimensionality reduction
because the data will have nonlinear correlation�

We have developed hierarchically arranged auto�
associating neural networks� The auto�associating
feed forward neural network performs Principal
Components Analysis with Non�Linear bases� so
called NLPCA���� This paper describes the hier�
archical NLPCA neural networks that realize di�
mensionality reduction and reproduction of mul�
tiple whole body motion patterns� We describe
that NLPCA suit better than PCA for the pur�
pose� The result is shown that phase relationship
among original motion patterns are well reserved
in reduced space with nonlinear bases so that rela�
tion among motion patterns can quantitatively be
evaluated�

The engineering application is to develop a joy�
stick controller for voluntary movement� It might
be possible to generate untrained motion patterns
by the generalization power of neural networks�
This application may also contribute the neuro�
physiologic study as a base to consider what kind
of variables human manipulate while taking or
learning voluntary movement�

�� Dimensionality Reduction Method for

Humanoid Motion Pattern

���� Motion Pattern Representation and Func�
tions of NLPCA

The arbitrary posture of a humanoid robot that
has N joints can be represented as N �dimensional
vector x in the joint angle space J � RN � The
whole body motion pattern is expressed as consec�
utive orbit OJ � fx��x�� � � �g in J if the pattern
is regarded as a set of momentary snapshots of pos�
ture� This OJ lies on some hyper curved surface
S from a geometrical constraint of the humanoid
robot� If S is modeled by the M nonlinear bases
which form space R � RM � then OJ are to be
represented as OR � R� While the number of the
nonlinear bases M is generally fewer than the N

joints� the dimensions of OR decrease� If this lower
dimensional space R preserves the topology of J �
then OR will still be consecutive orbit�

The NLPCA neural network illustrated in
Fig� �� whose input and output layers have the
same number of units� learns to approximate a
function g which realizes identity mapping for
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Figure �
 The left�right side layer denotes in�
put�output layer of NLPCA neural network� The �rst
half layers take role of injection and the latter half ones
do projection�

given data set�

�xi � �g�xi� ���

where xi denotes i�th vector of OJ � and �g denotes
the approximate function of g� The squared error
ei � k�xi � xik

� is minimized by descent steep�
est method with the weight parameters w which
connect units among layers� Here� k�k means the
norm� By passing through the middle hidden
layer� called feature layer� which has fewer num�
ber of unitsM than the number of input or output
units N � data xi � RN is injected into x�i � RM

and then re�projected on �xi � RN � That is� if we
denote �g � hi � hp� the neural network has a good
property of �nding hi that injects OJ onto S and
hp that re�projects OR onto surrounding OJ by
just evaluating the magnitude of ei�

x
� � hi�x� � f�wi�f�wi�x�� ���

�x � hp�x
�� � f�wp�f�wp�x

��� ���

where wi��wi��wp� and wp� are weight matrices
between two layers� and described from input layer
to output layer in order� For notational clarity� f
of a� � f�a� denotes a vector function� each ele�
ment of a� � RK is a sigmoidal output of the corre�
sponding element of the same dimensional vector
a � RK � Equations above are in the case of �
layers network as shown in Fig� ��

From sigmoidal continuity of f � if some two xi
are close each other� NLPCA neural network will
maintain the topological relationship between cor�
responding two x�i� Hence consecutive orbit OJ

tends to inject into consecutive orbit OR�

Our NLPCA neural network is sensitive to the
range ��� �� for each activation value from the char�
acteristics of sigmoid function f � For the nonlinear



optimization to work well� appropriate scaling fac�
tor in input and output layer is required� There
are many statistical solutions for normalization�
e�g� subtracting the mean and dividing by vari�
ance of data� In this paper� we just used interior
division between maximum and minimum of data
for experimental result� in the input layer of neu�
ral network� any activation value is scaled within
��� �� as linearly interior dividing point� and then
the activation value of output layer scale back to
original data range�

���� The Property of NLPCA and Comparison of
Reduction Power between NLPCA and PCA

The property of NLPCA neural network is analo�
gous to PCA� PCA �rstly arranges one linear basis
as the �rst principal axis to minimize information
loss� that is equal to maximizes the variance� in
data space� and then reduces the residual error
with the second or more principal axes� The main
di
erence is that NLPCA adopt nonlinear bases
for the principal axes�

When a NLPCA neural network learns with one
unit in the feature layer �that is M � ��� the ac�
tivation value in the feature layer takes a role of
�rst principal component� At this time� such a
nonlinear basis as the principal axis is selected�

�� the direction that enlarge the variance

�� the magnitude that normalize the distribution
within the range ��� �� in R

Here we asume M � k� and let the reduced vector
with Eq� ��� for xi be x

�k
i � �xi

�
�� xi

�
�� � � � � xi

�
k� and

let the regenerated data with Eq� ��� for x�ki be

�xki � Then the mean squred residual error of the
identity mapping Ek is

Ek �
�

n

nX

i

k�xki � xik
� ���

where n is the number of samples� Given an ad�
ditional unit in the feature layer� NLPCA neural
network learns to absorb the residual error of the
�rst principal component E� by adjusting only the
weights connected to the additional unit� When
the learning converged� the activation value of the
second unit xi

�
� takes a role of the second principal

component of xi� 　By adding units in the feature
layer repeatedly� the k�th principal component xi

�
k

can be obtained�

Here we describe that NLPCA suit for low di�
mensional representation of whole body motion
patterns better than PCA� We �rst prepared a
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Figure 

 The left is the semilog plot of singular value
of motion pattern walk� The right shows the norm of
residual error to compare reproduction power between
PCA and NLPCA� The vertical error bar on NLPCA
shows the dispersion of ten trials and the asterisks are
their average�

motion pattern walk Owk�
J that has physical con�

sistency on HOAP���� Owk�
J is a ������� ma�

trix sampled by every � msec� starts from stand�
ing position� takes � steps forward � left � right �
left �� and then returns to the initial standing po�
sition� The external appearance is shown in the
top of Fig� �� We tested the performance between
NLPCA neural network and PCA for this data�
PCA is computationally done by singular value
decomposition� The left of Fig� � shows computed
singular values for the matrix Owk�

J � Observe that
the exact rank of this matrix is given by the drop
of the curve� In this case� the rank is 	� That
means the �rst 	����� matrix gives the almost
perfect approximation of Owk�

J �

The right of Fig� � shows the comparison of the
power of dimensionality reduction between PCA
and NLPCA� By examining the mean of the resid�
ual error k�xki � xik shown in the ordinate of the
�gure� it is shown that NLPCA gives more precise
approximation of identity mapping than PCA� the
�rst � principal components with PCA are equiv�
alent to � ones with NLPCA� The reason why the
convergence of NLPCA levels o
 from �D is that
the lowest residue depends on learning rate � for
iterative learning� This � cannot be too high be�
cause it never converges� nor can it be too low
because it gets into local minima easily� The archi�
tecture of used NLPCA neural network consisted
of almost the same one as Fig� �� a single network
with �� units in input�output layer and �� units in
hidden layer� and only the number of units in the
feature layer varies from � to ��� � was set to �����
A general error back propagation algorithm��� is
used for a descent steepest method�

�Humanoid Robot by Fujitsu Corporation that has

�DOF for each arm and �DOF for each leg� that is totary

�� DOF� See URL below�

http���www�automation�fujitsu�com�products�products���html



descending pathway

sensory pathway

OJ
wk1

Figure �
 A design of hierarchical NLPCA neural networks� Two pathways are separately illustrated based on
the di�erence of the functional aspects� The arc implies the �ow of the signal transfer�

���� Hierarchical NLPCA Neural Networks

In order to suppress the bias and improve the
convergency when two or more motion patterns
are learned� we arrange several NLPCA neural
networks hierarchically by each level as shown in
Fig� �� This hierarchical NLPCA neural networks
works as a system for bidirectional conversion be�
tween low dimensional variables and multivariate
variables� We brie�y describe the algorithm of sig�
nal transfer below�

Firstly� independent four NLPCA neural net�
works are assigned to each of the arms and legs�
and then each network is trained to learn the iden�
tity mapping� Here� let these networks which di�
rectly transfer sensorimotor signals are the bot�
tom level and the others are superior level� Sec�
ondly� after each joint angle xi is reduced to x� by
Eq� ���� the activation value of the feature layer
x

� is referred to as an input xi of superior neu�
ral network� and the superior neural network also
learns the identity mapping for the reference input�
Lastly� by repeating a similar procedure� reduced
variables are obtained in the feature layer of supe�
rior neural network if learning converged� In this
way� the former half of each NLPCA neural net�

work is assigned to sensory pathway� Symmetri�
cally� the latter half is used as descending pathway
by following algorithm�

In the top level� the data x�i which is directly
pushed into the feature layer reproduce �xi in the
output layer by Eq� ���� This �xi is projected into
feature layer of inferior neural networks as x�i�
This procedure is repeated until �xi in J be �nally
obtained in the output layer of the bottom level
NLPCA neural networks�

���� The Biological Plausibility

As for human nervous system� voluntary move�
ment of the extremities is controlled by many de�
scending and sensory pathway� Descending path�
way is composed of motor neuron that transfers
motor command towards motor endplate for mo�
tion execution� Sensory pathway transfers the con�
sequence of motion execution back to motor neu�
ron or superior central nerve� Therefore� to ex�
ecute intentional behavior� activity in descending
and sensory pathway must interact with well each
other���� The fact has become clear that some
spinal interneurons form groups depend on the



projection�pathway� and those spinal interneurons
receive input from both pathways and give acti�
vation relevant to motor command���� We do not
intend to propose an imprudent hypothesis that
our NLPCA method provides the model of spinal
interneuron� but intend to bring evidence that hi�
erarchical architecture has some reasonable biolog�
ical functions as�

�� There exist a small number of group neurons
that connects central nerves with functionally
related muscles�

�� The spinal cord cannot be viewed as a sim�
ple relay of supraspinal motor commands to
the periphery� the organization of spinal mo�
tor system will place strong constraints on the
production of movement by supraspinal sys�
tems�

�� The e�ciency of synaptic transmission of sen�
sory pathway and descending pathway are
turned cooperatively�

The feature point of our model is that some
learning modules are prepared for the extremities
and form sensory and descending pathway as a to�
tal system� And though both pathways are in�
dependent in each module� the synaptic weights
are tuned in a couple while learning� Each mod�
ule mutually exchange multivariate data and re�
duced data of motor command� raw data are
converted into statistically signi�cant information
when transferred to superior modules� and the de�
scending path is simultaneously maintained to re�
produce fertile raw data� This is interesting be�
cause� even if the conversion from low dimensional
data to high dimensional data does not have a
unique solution� our model gives some useful� if
not optimal� solution at any rate� This function
mirrors certain aspect how humans learn their vol�
untary movement in the sense of procedural mem�
ory�

�� Internal Representation of Multiple

Motion Patterns

���� Learning a Unique Motion Pattern �Walk�

We now apply hierarchical NLPCA neural net�
works to dimensionality reduction of motion pat�
terns� The question is whether this can �nd some
convenient low�dimensional representation of the
data� We �rst prepared the hierarchical NLPCA

neural networks which are almost the same struc�
ture as Fig� � except that only one unit is used
in the feature layer at the top level of hierarchi�
cal NLPCA� The input �and also training target�
is Owk�

J used in section ���� The top diagram of
Fig� � shows one dimensional internal representa�
tion Owk�

R correspond to Owk�
J � The ordinate de�

notes x�i against the step i of the abscissa�

232 483 932
 a

ct
iv

at
io

n
 v

al
u
e 

step
o
ri

g
in

al
 w

al
k

re
d
u
ce

d
 w

al
k

0.62 0.22 0.350.41

Figure �
 Internal representation of walk �top� and its
external appearance �middle� compared to its original
attitude �bottom��

The middle picture of Fig� � shows the hu�
manoid attitude generated from x

�
������，x�����

����，x�	
� � ����，x��	� � ����� and the bottom
one shows the corresponding original attitudes�
Since kicking motion of supporting leg and swing�
ing back motion of the same lifted leg are close in
J � the similar posture is injected into the same
point in excessively reduced space R� Therefore
the switching phase of the supporting leg almost
synchronizes with turning value of the orbit in
R� If the motion pattern �walk� is interpreted as
a periodic motion with symmetric property� con�
sequentially the hierarchical NLPCA neural net�
works extracted R that re�ects its phase� This ex�
perimental result describes that appearance of pe�
riodic motion pattern can be generated by �uctua�
tion of only one control variable with an appropri�
ate nonlinear basis� Moreover� we found that such
a basis can be acquired through a simple learning
algorithm�



���� Learning Multiple Motion Patterns of Walk

We examined how the internal representation
changes in the low dimensional space as motion
patterns to be learned increase� In addition to
the result of Fig� �� that is just one walk pat�
tern is learned� other � types of walk patterns
are prepared
 walk with bend forward Owk�

R � walk
with bend backward Owk�

R � walk with short Owk	
R

and stride Owk�
R �Fig� ��� These motion patterns

are created by converting human posture with
the motion capturing system into the joint angle
based on the kinematics of the humanoid robot
HOAP������ The hierarchical NLPCA neural net�
works learn one set of data composed of Op

J
�p �

wk�� wk�� ���� wk���

2nd walk
3rd walk

4th walk
5th walk

1st walk
1st walk

1st walk 1st walk

Figure �
 The state of varying internal representation
with increment of captured walk patterns�

In case that the second walk pattern Owk�
J is

additionaly learnd� those two reduced orbits dis�
tributed away from each other �the top�left of
Fig� ��� This means that between�class variance
of Owk�

J and Owk�
J is large in the scale of whole

data set and the relationship is re�ected on the
�rst principal axis� The top�right of Fig� � also
gives an expected result for Owk�

J � In the bottom
of the same �gure� we see that Owk	

J traces near
Owk�
J and Owk�

J does near Owk�
J 
 these patterns

resemble each other also in external appearance�
Hence hierarchical NLPCA neural networks has a
characteristics that provide a quantitative evalua�
tion of the similarity among motion patterns� On
the other hand� we also notice transition that the
distribution of Owk�

J is shifted from area ����� ����
to ����� ���� with addition of walk patterns� This
result indicates that the variety of multiple motion
patterns leads localization for respective patterns�

���� Learning Various Types of Humanoid Mo�
tion Patterns

From the examination above� if the hierarchical
NLPCA neural networks are trained more with
various motion patterns� NLPCA will localize ev�
ery pattern in its reduced space� and will �nd the
topological relationship that similar patterns come
near and di
erent ones distribute away each other�
So in addition to the result of Fig� �� we train the
neural networks to learn swing Osw

J ，throw Oth
J ，

kick Okc
J and squat Osq

J
�Fig� ��� The right col�

umn part of the �gure shows the humanoid atti�
tudes that correspond to each x� whose value is
described by top�left number in the picture�

The remarkable point is that all walk patterns
by motion capture are injected into a speci�c area
����� ���� and occupy this area� This means� since
excessive reduction exclude the redundancy of the
variety of original walk patterns� any posture looks
like walk is injected into this area� The bottom of
Fig� � shows the humanoid postures in this area�
We con�rm that x�i ����� ���� ��� represent right�
step�forward� neutral and left�step�forward in or�
der� so that a rough walk pattern by motion cap�
ture can be produced by tracing sine curve in
����� ����� In fact� observation of the posture to
and fro reminds us of walking behavior�

1st walk

kick

squat

swing

throw

captured walks

0.40 0.45 0.52 0.55 0.60 0.1

0.3

0.5

0.7

0.9

Figure �
 Internal representation of each motion pat�
tern and corresponding attitude of humanoid robot�

The result above is interesting because di
erent
types of motion patterns never cross each other
in their internal representation� even though such
decay can easily be estimated that some of motion
representations might pass all over the space R�
This result cannot be achieved by PCA because



most of motion representations crossed over each
other�

We noticed that walk pattern Owk�
R is injected

apart from the other walk patterns� The external
appearance of the regenarated motion from Owk�

R

is shown in the middle of Fig� �� The walk patterns
by motion capture Op

J
�p � wk�� wk�� ���� wk��

are generated just considering kinematical consis�
tency� whereas Owk�

J is created considering physi�
cal consistency for biped locomotion in real emvi�
ronment� A twist around hip is important for
balancing control to cancel the adverse yaw
 this
movement has a great e
ect on movements of
other connected links� This split beetween Owk�

R

and Op

R
might re�ect the di
erence between Owk�

J

with the twist and Op

J
without one� Though the

roundhouse�high�kick Okc
R that has the kinemati�

cal twist �see the attitude of x� � ���� had come
nearer than Owk�

R against Owk�
R � the experimental

result seemed reasonable in that sense�

���� Motion Reproduction by the Learned Inter�
nal Representations

As illustrated in the middle of Fig� �� the hierar�
chical NLPCA neural networks can not approx�
imate the identity mapping well since the neu�
ral networks must represent various types of mo�
tion pattern� In this section� we attempt to im�
prove the accuracy of reproduction of motion pat�
terns while maintaining the structure of the �rst
principal component described in previous section�
Here� we assume that the original variety of mo�
tion pattern is to be regenerated by adding a kind
of perturbation terms to the �rst principal compo�
nent�

In order to absorb the residual error E� that is
caused by excessive estimation of the underlying
dimensionality� when the neural network with one
unit in feature layer in the top level NLPCA neu�
ral network converges� then we add a second unit
and train the neural networks again by following
the procedure introduced in Section ���� Note that
adding units means adding control variables for
motion pattern generation�

The left of Fig� � shows internal representations
of all motion patterns used in previous section
with an additional unit� For comparison� we also
prepared another hierarchical NLPCA neural net�
works that has the same structure except the num�
ber of unit in the feature layer is �xed two from the
beginning� and train the neural networks to learn
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Figure �
 Comparison of internal representation be�
tween unit�increment learning�left� and learning with
constant number of units from the beginning�right��

the right of the �gure shows the internal rerpesen�
tations with the hierarchical NLPCA� In the left
of the �gure the �rst unit�s value of the ordinate
can be interpreted as the �rst principal compo�
nent that represents approxiamte external appear�
ance of humanoid robot� and the second one of the
abscissa can be interpreted as the perturbation�
whereas the interpretation is unclear in the right
of the �gure� The intuitive structure of the for�
mar unit�incremental learning approach has some
advantages over the latter unit��xed one from a
robot control standpoint�

Additively another unit is trained in the same
way after learning with � units had converged�
The top of Fig� � illustrates external appearance
of original Owk�

J � the middle one does the motion
pattern regenerated by the � dimensional Owk�

R as
described in previous section and the bottom one
does regenerated motion from the � dimensional
Owk�
R � Though the hierarchical NLPCA must pro�

duce 	 motion patterns with � dimensional internal
representations� the identity mapping of motion
patterns is rather precise�

�� Conclusion

This paper presented the hierarchical NLPCA
neural networks that performs bidirectional map�
ping between multivariate control inputs and low
dimensional internal representation of humanoid
motion patterns� On a �� DOF humanoid robot�
we showed the results that � dimensional inputs
can generate approximate walking pattern and �
dimensional inputs do 	 types of motion patterns�

There are some researches about what kind of
principle makes choice or combination of DOF in
human for walk���
 it is unclear what kind of quan�
titative representation produce various types of
motions� Our approach takes motion patterns as
the set of state points in joint angle space� In that
sense� dimensionality reduction of motion patterns



Figure �
 Comparison of external appearances� original walk Owk�

J �top� and the regenarated motion from the
internal representation Owk�

R of �D �middle� and �D �bottom��

on humanoid robot is a problem of �nding low di�
mensional manifold in the high dimensional space�
We used NLPCA to overcome the nonlinearity of
the manifold�

We think the attraction of a humanoid robot is
in the variety of motor function of the extremities�
It is said that human acquires the low dimensional
control input from a large number of somatosen�
sory information by exploiting synergy�	�� Moving
the extremities and acquiring the manipulable in�
put� then human can take motions such as lying
down� Of course� human must solve the problem
of dynamic stability like biped locomotion
 how�
ever� it must be solved on the same principle that
manipulate their extremities� Currently� the main
stream of humanoid robot control is to stabilize
the strongly nonlinear system of the rigid body�
Therefore most of practical approaches considers
lower extremities as just supporting sticks and up�
per extremities and head as constraints of motion�
It is true that robotics must argue the dynamic
stability whatever con�guration the robot is
 how�
ever� since a humanoid robot takes the morphol�
ogy of human� we believe that the argument about
motion pattern generation of the extremities with
fewer input is also important as well as the dy�
namic problem�
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