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Abstract

Given the continuous stream of movements that bio-

logical systems exhibit in their daily activities, an ac-

count for such versatility and creativity has to assume

that movement sequences consist of segments, exe-

cuted either in sequence or with partial or complete

overlap. Therefore, a fundamental question that has

pervaded research in motor control both in artificial

and biological systems revolves around identifying

movement primitives (a.k.a. units of actions, basis

behaviors, motor schemas, etc.). What are the funda-

mental building blocks that are strung together,

adapted to, and created for ever new behaviors? This

paper summarizes results that led to the hypothesis of

Dynamic Movement Primitives (DMP). DMPs are

units of action that are formalized as stable nonlinear

attractor systems. They are useful for autonomous ro-

botics as they are highly flexible in creating complex

rhythmic (e.g., locomotion) and discrete (e.g., a ten-

nis swing) behaviors that can quickly be adapted to

the inevitable perturbations of a dynamically chang-

ing, stochastic environment. Moreover, DMPs pro-

vide a formal framework that also lends itself to in-

vestigations in computational neuroscience. A recent

finding that allows creating DMPs with the help of

well-understood statistical learning methods has ele-

vated DMPs from a more heuristic to a principled

modeling approach. Theoretical insights, evaluations

on a humanoid robot, and behavioral and brain im-

aging data will serve to outline the framework of

DMPs for a general approach to motor control in ro-

botics and biology.

1 Introduction

When searching for a general framework of how to

formalize the learning of coordinated movement,

some of the ideas developed in the middle of the 20
th

century still remain useful. At this time, theories from

optimization theory, in particular in the context of

dynamic programming [1, 2], described the goal of

learning control in learning a policy. A policy is for-

malized as a function that maps the continuous state

vector x of a control system and its environment, pos-

sibly in a time dependent way, to a continuous con-

trol vector u:

u = π x,α,t( ) (1)

The parameter vector α denotes the problem specific

adjustable parameters in the policy !—not unlike the

parameters in neural network learning. At the first

glance, one might suspect that not much was gained

by this overly general formulation. However, given

some cost criterion that can evaluate the quality of an

action u  in a particular state x, dynamic program-

ming, and especially its modern relative, reinforce-

ment learning, provide a well founded set of algo-

rithms of how to compute the policy ! for complex

nonlinear control problems. Unfortunately, as already

noted in Bellman’s original work, learning of ! be-

comes computationally intractable for even moder-

ately high dimensional state-action spaces. Although

recent developments in reinforcement learning in-

creased the range of complexity that can be dealt with

[e.g. 3, 4, 5], it still seems that there is a long way to

go to apply general policy learning to complex con-

trol problems.

In most robotics applications, the full complexity

of learning a control policy is strongly reduced by

providing prior information about the policy. The

most common priors are in terms of a desired trajec-

tory, [xd (t), ˙ x d (t)], usually hand-crafted by the in-

sights of a human expert. For instance, by using a PD

controller, a (explicitly time dependent) control pol-

icy can be written as:

u = π x,α t( ), t( ) = π x, x d t( ), ˙ x d t( )[ ], t( )
= K x xd t( ) − x( ) + K ˙ x 

˙ x d t( ) − ˙ x ( )
(2)

For problems in which the desired trajectory is easily

generated and in which the environment is static or

fully predictable, as in many industrial applications,

such a shortcut through the problem of policy gen-

eration is highly successful. However, since policies

like in (2) are usually valid only in a local vicinity of

the time course of the desired trajectory, they are not

very flexible. When dealing with a dynamically

changing environment in which substantial and reac-

tive modifications of control commands are required,
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one needs to modify trajectories appropriately, or

even generate entirely new trajectories by generaliz-

ing from previously learned knowledge. In certain

cases, it is possible to apply scaling laws in time and

space to desired trajectories [6, 7], but those can pro-

vide only limited flexibility, as similarly recognized

in related theories in psychology [8]. Thus, for gen-

eral-purpose reactive movement, the “desired trajec-

tory” approach seems to be too restricted.

From the viewpoint of statistical learning, Equa-

tion (1) constitutes a nonlinear function approxima-

tion problem. A typical approach to learning complex

nonlinear functions is to compose them out of basis

functions of reduced complexity. The same line of

thinking generalizes to learning policies: a compli-

cated policy could be learned from the combination

of simpler (ideally globally valid) policies, i.e., policy

primitives or movement primitives, as for instance:

u = π x,α,t( ) = πk x,αk ,t( )
k=1

K

∑ (3)

Indeed, related ideas have been suggested in various

fields of research, for instance in computational neu-

roscience as Schema Theory [9] and in mobile robot-

ics as behavior-based or reactive robotics [10]. In

particular, the latter approach also emphasized to re-

move the explicit time dependency of !, such that

complicated “clocking” and “reset clock” mecha-

nisms could be avoided, and the combination of pol-

icy primitives becomes simplified. Despite the suc-

cessful application of policy primitives in the mobile

robotics domain, so far, it remains a topic of ongoing

research [11, 12] how to generate and combine

primitives in a principled and autonomous way, and

how such an approach generalizes to complex move-

ment systems, like human arms and legs.

Thus, a key research topic, both in biological and

artificial motor control, revolves around the question

of movement primitives: what is a good set of primi-

tives, how can they be formalized, how can they in-

teract with perceptual input, how can they be adjusted

autonomously, how can they be combined task spe-

cifically, and what is the origin of primitives? In or-

der to address the first four of these questions, we

suggest to resort to some of the most basic ideas of

dynamic systems theory. The two most elementary

behaviors of a nonlinear dynamic system are point

attractive and limit cycle behaviors, paralleled by dis-

crete and rhythmic movement in motor control.

Would it be possible to generate complex movement

just out of these two basic elements? The idea of us-

ing dynamic systems for movement generation is not

new: motor pattern generators in neurobiology [13,

14], pattern generators for locomotion [15, 16], po-

tential field approaches for planning [e.g., 17], and

more recently basis field approaches for limb move-

ment [18] have been published. Additionally, work in

the dynamic systems approach in psychology [19-23]

has emphasized the usefulness of autonomous non-

linear differential equations to describe movement

behavior. However, rarely have these ideas addressed

both rhythmic and discrete movement in one frame-

work, task specific planning that can exploit both in-

trinsic (e.g., joint) coordinates and extrinsic (e.g.,

Cartesian) coordinate frames, and more general pur-

pose behavior, in particular for multi-joint arm

movements. It is in these domains, that the present

study offers a novel framework of how movement

primitives can be formalized and used, both in the

context of biological research and humanoid robotics.

2 Dynamic Movement Primitives

Using nonlinear dynamic systems as policy primi-

tives is the most closely related to the original idea of

motor pattern generators (MPG) in neurobiology.

MPGs are largely thought to be hardwired with only

moderately modifiable properties. In order to allow

for the large flexibility of human limb control, the

MPG concept needs to be augmented by a component

that can be adjusted task specifically, thus leading to

what we call a Dynamic Movement Primitive (DMP).

We assume that the attractor landscape of a DMP rep-

resents the desired kinematic state of a limb, e.g., po-

sitions, velocities, and accelerations. This approach

deviates from MPGs which are usually assumed to

code motor commands, and is strongly related to the

idea developed in the context of “mirror laws” by

Bühler, Rizzi, and Koditschek [24, 25]. As shown in

Figure 1, kinematic variables are converted to motor

commands through an inverse dynamics model and

stabilized by low gain feedback control. The motiva-

tion for this approach is largely inspired by data from

neurobiology that demonstrated strong evidence for
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Figure 1: Sketch of control diagram with dynamic move-

ment primitives. Each degree-of-freedom of a limb has a
rest state θ

o
 and an oscillatory state θ

r
.
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the representation of kinematic trajectory plans in pa-

rietal cortex [26] and inverse dynamics models in the

cerebellum [27, 28]. Kinematic trajectory plans are

equally backed up by the discovery of the principle of

motor equivalence in psychology [e.g., 29], demon-

strating that different limbs (e.g., fingers, arms, legs)

can produce cinematically similar patterns despite

having very different dynamical properties; these

findings are hard to reconcile with planning directly

in motor commands. Kinematic trajectory plans, of

course, are also well known in robotics from com-

puted torque and inverse dynamics control schemes

[30]. From the view point of movement primitives,

kinematic representations are more advantageous

than direct motor command coding since this allows

for workspace independent planning, and, impor-

tantly, for the possibility to superimpose DMP. How-

ever, it should be noted that a kinematic representa-

tion of movement primitives is not necessarily inde-

pendent of dynamic properties of the limb. Proprio-

ceptive feedback can be used to modify the attractor

landscape of a DMP in the same way as perceptual

information [25, 31, 32].

2.1 Formalization of DMPs

In order to accommodate discrete and rhythmic

movements, two kinds of DMPs are needed, a point

attractive system and a limit system. Although it is

possible to construct nonlinear differential equations

that could realize both these behaviors in one set of

equations [e.g., 33], for reasons of robustness, sim-

plicity, functionality, and biological realism (see be-

low), we chose an approach that separates these two

regimes. Every degree-of-freedom (DOF) of a limb is

described by two variables, a rest position θ
o
 and a

superimposed oscillatory position, θ
r
, as shown in

Figure 1. By moving the rest position, discrete mo-

tion is generated. The change of rest position can be

anchored in joint space or, by means of inverse kine-

matics transformations, in external space. In contrast,

the rhythmic movement is produced in joint space,

relative to the rest position. This dual strategy permits

to exploit two different coordinate systems: joint

space, which is the most efficient for rhythmic

movement, and external (e.g., Cartesian) space,

which is needed to reference a task to the external

world. For example, it is now possible to bounce a

ball on a racket by producing an oscillatory up-and-

down movement in joint space, but using the discrete

system to make sure the oscillatory movement re-

mains under the ball such that the task can be accom-

plished—this task actually motivated our current re-

search [34].

The key question of DMPs is how to formalize

nonlinear dynamic equations such that they can be

flexibly adjusted to represent arbitrarily complex

motor behaviors without the need for manual pa-

rameter tuning and the danger of instability of the

equations. We will develop our approach in the ex-

ample of a discrete dynamic system for reaching

movements. Assume we have a basic point attractive

system, for instance, instantiated by the second order

dynamics

€ 

τ ˙ z =αz β z g − y( ) − z( ), τ ˙ y = z + f (4)

where g is a known goal state, 

€ 

α
z
 and 

€ 

β
z
 are time

constants, 

€ 

τ  is a temporal scaling factor (see below)

and 

€ 

y ,

€ 

˙ y  correspond to the desired position and ve-

locity generated by the equations, interpreted as a

movement plan. For appropriate parameter settings

and f=0, these equations form a globally stable linear

dynamical system with g as a unique point attractor.

Could we find a nonlinear function f in Equation (4)

to change the rather trivial exponential convergence

of y to allow more complex trajectories on the way to

the goal? As such a change of Equation (4) enters the

domain of nonlinear dynamics, an arbitrary complex-

ity of the resulting equations can be expected.  To the

best of our knowledge, this has prevented research

from employing generic learning in nonlinear dy-

namical systems so far. However, the introduction of

an additional canonical dynamical system  (x,v)

€ 

τ ˙ v =αv βv g − x( ) − v( ), τ ˙ x = v (5)

and the nonlinear function f

€ 

f x,v,g( ) =
ψ iwi v

i=1

N

∑

ψ
i

i=1

N

∑
,

where ψ
i
= exp −h

i

x

g
− c

i

 

 
 

 

 
 

2 

 
  

 

 
  

(6)

can alleviate this problem. Equation (5) is a second

order dynamical system similar to Equation (4), how-

ever, it is linear and not modulated by a nonlinear

function, and, thus, its monotonic global convergence

to g can be guaranteed with a proper choice of 

€ 

α
v

and 

€ 

β
v
, e.g., such that Equation (5) is critically

damped. Assuming that all initial conditions of the

state variables x,v,y,z are initially zero, the quotient

€ 

x / g∈[0,1]  can serve as a phase variable to anchor

the Gaussian basis functions 

€ 

ψ i
 (characterized by a

center 

€ 

c i  and bandwidth 

€ 

hi ), and v can act as a “gat-

ing term” in the nonlinear function (6) such that the

influence of this function vanishes at the end of the

movement. Assuming boundedness of the weights 

€ 

w
i

in Equation (6), it can be shown that the combined
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system in Equations (4),(5),(6) asymptotically con-

verges to the unique point attractor g.

Given that f is a normalized basis function repre-

sentation with linear parameterization, it is obvious

that this choice of a nonlinearity allows applying a

variety of learning algorithms to find the 

€ 

w
i
. For in-

stance, if a sample trajectory is given in terms as

€ 

ydemo (t), ˙ y demo (t)  and a duration T, e.g., as typical in

imitation learning [35], a supervised learning problem

can be formulated with the target trajectory

€ 

f target = τ ˙ y demo − zdemo  for the right part of Equation

(4), where 

€ 

z
demo
 is obtained by integrating the left

part of Equation (4) with 

€ 

ydemo instead of y. The cor-

responding goal is 

€ 

g = ydemo (t =T ) − ydemo (t = 0) , i.e.,

the sample trajectory was translated to start at y=0. In

order to make the nominal (i.e., assuming f=0) dy-

namics of Equations (4) and (5) span the duration T

of the sample trajectory, the temporal scaling factor

€ 

τ  is adjusted such that the nominal dynamics

achieves 95% convergence at t=T. For solving the

function approximation problem, we chose a non-

parametric regression technique from locally

weighted learning (RFWR) [36] as it allows us to

determine the necessary number of basis functions N,

their centers 

€ 

c i , and bandwidth 

€ 

hi  automatically—in

essence, for every basis function 

€ 

ψ
i
, RFWR performs

a locally weighted regression of the training data to

obtain an approximation of the tangent of the func-

tion to be approximated within the scope of the ker-

nel, and a prediction for a query point is achieved by

a 

€ 

ψ
i
-weighted average of the predictions  of all local

models. Moreover, the parameters 

€ 

w
i
 learned by

RFWR are also independent of the number of basis

functions, such that they can be used robustly for

categorization of different learned DMPs.

In summary, by anchoring a linear learning sys-

tem with nonlinear basis functions in the phase space

of a canonical dynamical system with guaranteed at-

tractor properties, we are able to learn complex at-

tractor landscapes of nonlinear differential equations

without losing the asymptotic convergence to the goal

state. Ijspeert et al [37] demonstrate how the same

strategy as described for a point attractive system

above can also be applied to limit cycle oscillators,

thus creating oscillator systems with almost arbitrar-

ily complex limit cycles. It is also straightforward to

augment the suggested approach of DMPs to multiple

DOFs: there is only one canonical system (cf. Equa-

tion (5)), but for each DOF a separate function f is

learned. Even highly complex phase relationships

between different DOFS, as for instance needed for

locomotion, are easily and stably realizable in this

approach.

2.2 Application to Humanoid Robotics

We implemented our DMP system on a 30 DOF Sar-

cos Humanoid robot. Desired position, velocity, and

acceleration information was derived from the states

of the DMPs to realize a compute-torque controller.

All necessary computations run in real-time at 420Hz

on a multiple processor VME bus operated by

VxWorks. We realized arbitrary rhythmic “3-D

drawing” patterns, sequencing of point-to-point

movements and rhythmic patterns like ball bouncing

with a racket. Figure 2a shows our humanoid robot in

a drumming task. The robot used both arms to gener-

ate a regular rhythm on a drum and a cymbal. The

arms moved in 180-degree phase difference, primar-

ily using the elbow and wrist joints, although even

the entire body was driven with oscillators for rea-

sons of natural appearance. The left arm hit the cym-

bal on beat 3, 5, and 7 based on an 8-beat pattern. The

velocity zero crossings of the left drum stick at the

moment of impact triggered the discrete movement to

the cymbal. Figure 2b shows a trajectory piece of the

left and the right elbow joint angles to illustrate the

drumming pattern. Given the independence of a dis-

crete and rhythmic movement primitives, it is very

a)            

b)  
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Figure 2: a) Humanoid robot in drumming task, b) coordi-

nation of left and right elbow, demonstrating the superposi-
tion of discrete and rhythmic DMPs.
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easy to create the demonstrated bimanual coordina-

tion without any problems to maintain a steady

drumming rhythm.

Another example of applying the DMP is in the

area of imitation learning, as outlined in the previous

section. Figure 3 illustrates the teaching of a tennis

forehand to our humanoid, using an exoskeleton to

obtain joint angle data from the human demonstra-

tion. The learned multi-joint DMP can be re-used for

different targets and at different speeds due to the

flexible appearance of the goal parameter g and time

scaling τ—in the example in Figure 3, the Cartesian

ball position is first converted to a joint angle target

by inverse kinematics algorithms, and subsequently

each DOF of the robot receives a separate joint space

goal state for its DMP component.

3 Parallels in Biological Research

Our ideas on dynamic movement primitives for motor

control are based on biological inspiration and com-

plex system theory, but do they carry over to biol-

ogy? Over the last years, we explored various ex-

perimental setups that could actually demonstrate that

dynamic movement primitives as outlined above are

indeed an interesting modeling approach to account

for various phenomena in behavioral and even brain

imaging experiments. The remainder of this paper

will outline some of the results that we obtained.

3.1 Dynamic Manipulation Tasks

From the viewpoint of motor psychophysics, the task

of bouncing a ball on a racket constitutes an interest-

ing testbed to study trajectory planning and visuo-

motor coordination in humans. The bouncing ball has

a strong stochastic component in its behavior and re-

quires a continuous change of motor planning in re-

sponse to the partially unpredictable behavior of the

ball.

In previous work [34], we examined which prin-

ciples were employed by human subjects to accom-

plish stable ball bouncing. Three alternative move-

ment strategies were postulated. First, the point of

impact could be planned with the goal of intersecting

the ball with a well-chosen movement velocity such

as to restore the correct amount of energy to accom-

plish a steady bouncing height [38]; such a strategy is

characterized by a constant velocity of the racket

movement in the vicinity of the point of racket-ball

impact. An alternative strategy was suggested by

work in robotics: the racket movement was assumed

to mirror the movement of the ball, thus impacting

the ball with in increasing velocity profile, i.e., posi-

tive acceleration [25]. The dynamical movement

primitives introduced above allow yet another way of

accomplishing the ball bouncing task: an oscillatory

racket movement creates a dynamically stable basin

Figure 3: Left Column: Teacher demonstration of a tennis

swing, Right Column: Imitated movement by the humanoid
robot.
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of attraction for ball bouncing, thus allowing even

open-loop stable ball bouncing. This movement strat-

egy is characterized by a negative acceleration of the

racket during impacting the ball [39]—a quite non-

intuitive solution: why would one break the move-

ment before hitting the ball?

Examining the behavior of six subjects revealed

the surprising result that dynamic movement primi-

tives captured the human behavior the best: all sub-

jects reliably hit the ball with a negative acceleration

at impact, as illustrated in Figure 4. Manipulations of

bouncing amplitude also showed that the way the

subjects accomplished such changes could easily be

captured by a simple re-parameterization of the os-

cillatory component of the movement, similarly as

suggested for our DMPs above.

3.2 Apparent Movement Segmentation

Invariants of human movement have been an impor-

tant area of research for more than two decades. Here

we will focus on two such invariants, the 2/3 power

law and piecewise planar movement segmentation,

and how a parsimonious explanation of those effects

can be obtained. Studying handwriting and 2D

drawing movements, Viviani and Terzuolo [40] first

identified a systematic relationship between angular

velocity and curvature of the endeffector traces of

human movement, an observation that was subse-

quently formalized in the “2/3 power law” [41]:

a t( ) = k c t( )
2 /3

(7)

a(t) denotes the angular velocity of the endpoint tra-

jectory, and c(t) the corresponding curvature; this re-

lation can be equivalently expressed by a 1/3 power-

law relating tangential velocity v(t) with radius of

curvature r(t):

v t( ) = k r t( )
1/3

(8)

Since there is no physical necessity for movement

systems to satisfy this relation between kinematic and

geometric properties, and since the relation has been

reproduced in numerous experiments (for an over-

view see [42]), the 2/3-power law has been inter-

preted as an expression of a fundamental constraint of

the CNS, although biomechanical properties may sig-

nificantly contribute [43]. Additionally, Viviani and

Cenzato [44] and Viviani [45] investigated the role of

the proportionality constant k as a means to reveal

movement segmentation: as k is approximately con-

stant during extended parts of the movement and only

shifts abruptly at certain points of the trajectory, it

was interpreted as an indicator for segmented control.

Since the magnitude of k also appears to correlate

with the average movement velocity in a movement

segment, k was termed the “velocity gain factor.”

Viviani and Cenzato [44] found that planar elliptical

drawing patterns are characterized by a single k and,

therefore, consist of one unit of action. However, in a

fine-grained analysis of elliptic patterns of different

eccentricities, Wann , Nimmo-Smith, and Wing [46]

demonstrated consistent deviations from this result.

Such departures were detected from an increasing

variability in the log-v–log-r-regressions for estimat-

ing k and the exponent β of Equation (2), and as-

cribed to several movement segment each of which

having a different velocity gain factor k.

The second movement segmentation hypothesis

we want to address partially arose from research on

the power law. Soechting and Terzuolo [47, 48] pro-

vided qualitative demonstrations that 3D rhythmic

endpoint trajectories are piecewise planar. Using a

curvature criterion as basis for segmentation, they

confirmed and extended Morasso’s [49] results that

rhythmic movements are segmented into piecewise

planar strokes. After Pellizzer, Massay, Lurito, and

Georgopoulus [50] demonstrated piecewise planarity

even in an isometric task, movement segmentation

into piecewise planar strokes has largely been ac-

cepted as one of the features of human and primate

arm control.
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Figure 5: Tangential velocity versus radius of curvature to

the power 1/3 for ellipses of small, medium, and large size

for elliptical pattern orientations in the frontal and oblique

workspace plane: a) human frontal; b) human oblique; c)

robot frontal; d) robot oblique.
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We repeated some of the experiments that led to

the derivation of the power law, movement segmen-

tation based on the power law, and movement seg-

mentation based on piecewise planarity. We tested six

human subjects when drawing elliptical patterns and

figure-8 patterns in 3D space freely in front of their

bodies. Additionally, we used an anthropomorphic

robot arm, a Sarcos Dexterous Arm, to create similar

patterns as those performed by the subjects. The robot

generated the elliptical and figure-8 patterns solely

out of joint-space oscillations, as described for the

DMPs above. For both humans and the robot, we re-

corded the 3D position of the fingertip and the seven

joint angles of the performing arm.

Figure 5 illustrates data traces of one human sub-

ject and the robot subject for elliptical drawing pat-

terns of different sizes and different orientations. For

every trajectory in this graph, we computed the tan-

gential velocity of the fingertip of the arm and plotted

it versus the radius of curvature raised to the power

1/3. If the power law were obeyed, all data points

should lie on a straight line through the origin. Figure

5a,b clearly demonstrates that for large size patterns,

this is not the case, indicating that the power seems to

be violated for large size patterns. However, the de-

velopment of two branches for large elliptical pat-

terns in Figure 5a,b could be interpreted that large el-

liptical movement patterns are actually composed of

two segments, each of which obeys the power law.

The rejection of the latter point comes from the robot

data in Figure 5c,d. The robot produced strikingly

similar features in the trajectory realizations as the

human subjects. However, the robot simply used os-

cillatory joint space movement to create these pat-

terns, i.e., there was no segmented movement gen-

eration strategy. Some mathematical analysis of the

power law and the kinematic structure of human arms

could finally establish that the power law can be in-

terpreted as an epiphenomenon of oscillatory move-

ment generation: as long as movement patterns are

small enough, the power law holds, while for large

size patterns the law breaks down [51, 52].

Using figure-8 patterns instead of elliptical pat-

terns, we were also able to illuminate the reason for

apparent piecewise-planar movement segmentation in

rhythmic drawing patterns. Figure 6 shows figure-8

patterns performed by human and robot subjects. If

realized with an appropriate width-to-height ratio,

figure-8 patterns look indeed like piecewise planar

trajectories and invite the hypothesis of movement

segmentation at the node of the figure-8. However, as

in the previous experiment, the robot subject pro-

duced the same features of movement segmentation

despite it used solely joint space oscillations to create

the patterns, i.e., no movement segmentation. Again,

it was possible to explain the apparent piecewise pla-

narity from a mathematical analysis of the kinematics

of the human arm, rendering piecewise planarity to be

an epiphenomenon of oscillatory joint space trajecto-

ries and the nonlinear kinematics of the human arm.

[51].

3.3 Superposition of Discrete and

Rhythmic Movement

In another experiment, we addressed the hypothesis

of DMP that two separate movement primitives gen-

erate discrete and rhythmic movement. Subjects per-
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Figure 6: Planar projection of one subject’s figure-8 patterns of small, medium, and large width/height ratio: a-c) human
data; d-f) corresponding robot data.
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formed oscillatory elbow movements around a given

point in space and shifted the mean position of the el-

bow at an auditory signal to another point. In previ-

ous work [53], it was argued that such a discrete shift

terminates the oscillatory elbow movement and re-

starts it after the shift. Using the model of dynamic

movement primitives, we were able to demonstrate

that a simple coupling structure between the discrete

and rhythmic movement system can actually explain

all the phenomena observed in this experiment, in-

cluding phase resetting, a restricted set of onset

phases for the discrete movement within the rhythmic

movement, and kinematic

features of the trajectory after

the discrete shift [54, 55].

3.4 Brain Activation in

Discrete and Rhythmic

Movement

A last set of experiments ad-

dressed the question whether

discrete and rhythmic move-

ments make use of different

brain centers. In a 4Tesla

scanner, subjects performed

either continuous oscillations

with the wrist at two different

frequencies, or discrete flexion

and extension movements with

pseudo-random movement

start times. Both conditions

were executed either with or

without metronome pacing,

and even with the foot instead

of the wrist in three subjects.

SPM99 based data analysis,

including averaging across 11

subjects, provided highly sta-

tistically significant results

(Figure 7). While rhythmic

movement was confined to ac-

tivation in primary contralat-

eral motor cortices, supple-

mentary motor cortex, and ip-

silateral cerebellum, discrete

movement elicited additional

activation in contralateral pre-

motor and parietal areas, and

also in various ipsilateral corti-

cal regions. These results indi-

cate that discrete movements,

even as simple as wrist flex-

ion-extension movements, re-

cruit significantly more corti-

cal areas than rhythmic movement, and that discrete

and rhythmic movement may have different move-

ment generating principles in the brain. Thus, the

model of rhythmic and discrete movement primitives

may even have physiological significance.

4 Conclusion

The present study describes research towards gener-

ating flexible movement primitives out of nonlinear

dynamic attractor systems. We focused on motivating

appropriate dynamic systems such that discrete and
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Figure 7: Difference in brain activation between discrete and rhythmic movement

obtained by contrasting discrete and rhythmic wrist movement. See legend on the left

of the figure for explanations of which contrasts are displayed (note that this plot may

not be clear in a black-and-white printout—download a PDF version at http://www-

clmc.usc.edu/publications). RHYTHMIC-REST and DISCRETE-REST in the middle plot

of all subfigures demonstrate the main effects of brain activity during RHYTHMIC and

DISCRETE movement conditions—when there is overlap between the two contrasts,

the Overlay Color Legend on the left of the subfigures is used to highlight the degree

of overlap. RHYTHMIC-DISCRETE shows brain areas where rhythmic movement has

stronger activity than discrete movement. Analogously, DISCRETE-RHYTHMIC dis-

plays areas that showed significantly more activation than rhythmic movement. The

right plot of all three subfigures shows the RHYTHMIC-DISCRETE and DISCRETE-

RHYTHMIC contrasts in isolation for the sake of clarity—no overlap is possible. The

left plot in all subfigures superimposes the activities from the other plots in the sub-

figure to allow an easy comparison of activation locations. All results shown are sta-

tistically significant at a level of p<0.00001, corrected for multiple comparisons

within the entire brain volume. Abbreviations are[56]: AC: anterior commissure; PC:

posterior commissure; VAC: vertical line perpendicular to the AC-PC, passing

through the AC; PAC: vertical line perpendicular to  the AC-PC, passing through the

PC; CCZ: caudal cingulate zone; RCZ: rostral cingulate zone, divided in an anterior

(RCZa) and posterior (RCZp) part; SMA: caudal portion of the supplementary motor

area, corresponding to SMA proper; pre-SMA: rostral portion of the supplementary

motor area; M1: primary motor cortex; S1: primary sensory cortex; PMdr: rostral part

of the dorsal premotor cortex; PMdc: caudal part of the dorsal premotor cortex; BA7:
Brodman area 7 in parietal cortex; BA40: Brodman area 40 in parietal cortex.
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rhythmic movements could be generated with high-

dimensional movement systems. We also described

some implementations of our system of Dynamic

Movement Primitives on a complex anthropomorphic

robot. In the last sections of the paper, we outlined

various behavioral and imaging studies that resulted

from our more theoretically motivated model. We

believe that the combination of robotic, theoretical,

and biological work that we pursued for the presented

studies exemplifies a new path towards research in

biomimetic robotics and computational neuroscience.

Both disciplines can offer different and new ideas and

techniques that will ultimately lead to reciprocal

benefits in both disciplines.
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