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Abstract

In this paper, we study on information processing
of robot using synchronization in nonlinear dynam-
ical systems. As a nonlinear dynamics used for in-
formation processing, we employ the Arnold equation
which is known to show the chaotic behaviors of non-
compressive perfect fluid. We design a dynamics based
information processing system by which periodic mo-
tions of robot are controlled, using synchronization in
the coupled Arnold equations. Experimental results

illustrate the usefulness of the proposed method.

1. Introduction

In biological brains and nervous systems, many
nonlinear dynamical phenomena like chaos are ob-
served through physiological experiments. It is
considered that such nonlinear dynamical phenom-
ena play important roles in the information pro-
cessing in brains and nervous systems. For exam-
ple, Freeman showed that the main components
of neural activity in olfactory systems of rabbits
are chaotic and at times the activities of neu-
rons may come close to a limit cycle by odor in-
puts. Mathematical models of olfactory systems
and pattern recognition using the models have
also been studied[1][2]. Chaotic neural networks
and those applications are also studied by some
researchers[3]-[5].

Dynamics based information processing using
such nonlinear dynamical phenomena is expected
to be a new approach to a robot intelligence.
Okada et al. proposed an information processing
that realizes the memorization and generation of
the humanoid whole body motion using the nonlin-
ear dynamics with the polynomial configuration[6)].

In this paper, we try to develop an informa-
tion processing system of robot using nonlinear dy-
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Figure 1: Behavior control using dynamical synchro-
nization

namical phenomena like chaos, transition between
chaos and nonchaos, or synchronization. As a non-
linear dynamics used for information processing,
we employ the Arnold equation which is known
to show the chaotic behaviors of non-compressive
perfect fluid. We design a dynamics based infor-
mation processing system by which periodic mo-
tions of robot are controlled, using synchronization
in the coupled Arnold equations.

2. Behavior Control Using Synchroniza-
tion of Nonlinear Dynamics

Synchronization phenomena are sometimes ob-
served in two dynamical systems that are con-
nected each other. In this paper, we study on
behavior control of robot using such synchroniza-
tion phenomena or attraction to periodic orbits in
nonlinear dynamical systems.

We design a dynamics based information pro-
cessing system of robot like Fig.1, using a pair
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Figure 2: Arnold flow

of dynamical systems connected each other. One
of the two dynamical systems is considered as a
sensor system, and the other is considered as a
motor system. They are mutually connected in-
cluding environment, and interaction with envi-
ronment causes synchronization or attraction to
limit cycles in the dynamical systems. Behaviors
of the robot is controlled or generated using such
synchronization or entrainment.

In this paper, we employ the Arnold equation
as a nonlinear dynamics and study on such infor-
mation processing and behavior control of robot
as stated above using the Arnold equation. The
Arnold equation was used in our study on the
chaotic mobile robot[7] and its structure is known.
It is a three-dimensional continuous nonlinear dy-
namical system, and therefore it is comparatively
easy to deal with.

3. The Arnold Equation

The Arnold equation is written as follows:

2"1 A3 sin z3 + AQ COS zZ2
%9 = Ajpsin z; + Az cos z3
23 Assin zg + Aj cos 2y

(1)

where A;,As and Az are constant parameters.
The Arnold equation is one of steady solutions
of 3-dimensional Euler equation, which expresses
the behaviors of non-compressive perfect fluids
on a 3-dimensional torus space. (z1,22,23) and
(v1,v2,v3) denote the position and velocity of a
particle, and p, (f1, f2, f3) and p denote the pres-
sure, external force, and density, respectively. It
is known that the Arnold equation shows periodic
motion when one of the constants, for example A,,
is 0 or small (Fig.2(a)), and shows chaotic motion
when A, is large (Fig.2(b))[8]. Its periodic motions
or chaotic motions, and velocity can be varied by

varying its parameters A;, As and As.

4. Information Processing Using Syn-
chronization in the Coupled Arnold
Equations

Let @ = (A; Ay A3)T denote the constant param-
eter of the Arnold equation, and z = f(z) denote
the Arnold equation. Since the Arnold equation
is a conservative system, the Arnold flow stays in
a definite orbit depending upon its initial condi-
tion and is not attracted to attractors. Therefore,
we design connections between two Arnold equa-
tions so that synchronization will occur between
the two systems, and design a dynamics based in-
formation processing system like Fig.1 using the
coupled Arnold equations.

4.1. Synchronization in the coupled Arnold equa-

tions

Consider the mutually connected Arnold flows de-
scribed by

f(z1) +u(z2)
f(z2) +u(z1)

Z =
(2)

where u(z;) (i = 1,2) is the input from another
Arnold flow. u(z) is designed so that z; and z»
synchronize in the system.

Zy =

We design u(z;) as follows:

kH(z)Ev(z) 3)

T
4

(
where k is a positive constant, H € R**? and E is

u(z) = (
)

v(z) = (sinz; cosz; sinzs cosze sinzz coOS 23

~—

000110
E=110 0001 (5)
011000
H(z) is designed as
H=vUT (6)

where U and V are matrices obtained from the
singular value decomposition (SVD) of P:

p=usvT (7)
0 —sinzy,  COSz3
P= coS 21 0 —sin 23 (8)
—sinz; coSzy 0
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(a) Trajectories of z1 and z»
a=(0.25 —0.15 0.25)T
z1(0) = (0 0 0)T, 22(0) = (1 1 1)T

k =0.06
(b) z1 — 22
Figure 3: Behavior of the mutually connected Arnold
flows

Figure 3 shows an example of behaviors of this
system. Figures (a) show trajectories of the two
Arnold flows, where the top left figure shows the
trajectories in a three-dimensional space, the top
right shows a projection of the trajectories to the
z1-2z3 plane, and the bottom shows z;(t),22(t) and
z3(t), respectively. Figure (b) shows z; — z5. The
trajectories of the two Arnold flows are attracted
to a periodic pattern and synchronize. The syn-
chronized orbit is dependent upon the parameters.
The system has two attracters, and the trajecto-
ries are attracted to either of the two attracters.
We can use such synchronization phenomena in
the mutually connected Arnold flows to control be-
haviors of a robot, by expanding the mutual con-
nection into the connection including environment
as shown in Fig.1.

4.2. Dynamics based information processing sys-

tem using the coupled Arnold equations

Now we design a dynamics based information pro-
cessing system of robot using the coupled Arnold
equations. Let us consider one of the Arnold flow
as a sensor system, and the other as a motor sys-
tem. Then we cut the connection from the mo-
tor system to the sensor system, and re-connect it
through the environment as shown in Fig.1. The
output from the motor system drives the robot
motors through the mapping h. Sensory signals
from the World are inputted to the sensor system
through the mapping g. If we can design ¢ and h
such that the composed mapping g o (World) o h
becomes an identity mapping, this opened system
including the World will behave in the same way
as the closed, coupled Arnold equations.

Thus, by designing a closed system in which
synchronization occurs, we can control behaviors
of the opened system. However, in practice it is
not easy to design g and h so that the mapping
go (World) o h becomes an identity mapping, since
the World has transfer characteristics. It is con-
sidered that this complicates the system behaviors.

In this paper, we design ¢ and h using neural
networks. For periodic motion patterns of the
robot and patterns of the coupled Arnold flows,
we obtain neural networks g and h so that g maps
the robot sensor patterns to the Arnold patterns,
and h maps the Arnold patterns to the robot mo-
tion patterns. Using such g and h, it is expected
that synchronization occurs in the system, and the
periodic motions are controlled.

Note that the proposed method provides a
framework such that we can separately design syn-
chronized patterns of the dynamical sensor-motor
system and motion patterns of the robot.

4.3. Synchronization between two pairs of the

sensor-motor system

When applying the proposed method to robots
with many DOF, it becomes difficult to get map-
pings g and h. To solve this problem, we consider
using some pairs of the sensor-motor system (in
the proposed method, the coupled Arnold flows).
If there are some pairs of the sensor-motor system,
where each pair can control motions of subchains
with relatively small number of DOF (for example
legs, arms, and so on), we can control motions of
the whole robot with many DOF by synchronizing
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a=(0.25 —0.15 0.25)T
k=01,e=020=0

Figure 4: Behavior of two pairs of the mutually con-
nected Arnold flows

the motions of those pairs.

In this section, we consider synchronizing mo-
tions of two pairs of the coupled Arnold flows, by
interactions between the two pairs. Denote the two
pairs of the sensor-motor system as S1-M1 and S2-
M2 respectively, state variables of the sensor sys-
tem and the motor system as z°¢, 2™ (i = 1,2),
and the Arnold flow as f(z%).

First, we consider synchronizing two pairs with
the same parameter values, by adding mutual con-
nection between the two motor systems:

é;Si — f(ZSi)-I-'u,(Zmi)
M= fEM) +u(z) + €M 9)
i=1,2

where u(z) is the connection between the sensor
system and the motor system, which was designed
in Sect.4.1.. €™ denotes the connection between
the two motor systems.

Note that, when trajectories of the sensor-motor
system designed in Sect.4.1. are synchronized,
they flows along one of the coordinate directions.
Considering this fact, for example when the two
pairs flow along 2, direction like Fig.3, we deter-
mine €™ as follows:

gml —
£m2 —

Figure 4 shows an example of behaviors of this
system. The top figures show projections of the

(0 esin((23"? +6) — 25y 0)F
(0 esin(z"" — (22" +6)) 0)T (10)

(a) Trajectories of ¢ and z™*
a; = (0.25 —0.15 0.25)T, a2(0) = (0.25 —0.15 0.25)7
ki = 0.12, k2(0) =0.06, £ = 0.2, # =0, 7 = 15.0

(c) a2 and ko

Figure 5: Behavior of two pairs of the mutually con-
nected Arnold flows, with varying parameter values

trajectories to the zi-z3 plane, where the top left
figure shows the trajectories of the S1-M1 system
and the top left shows those of the S2-M2. The
bottom figure shows trajectories of M1 and M2.
As seen in the figures, motions of the two pairs
synchronize.

Next, we consider synchronizing two pairs with
different parameter values. When the two pairs
have different parameter values, their attracters
have different period lengths. Therefore the two
pairs are not synchronized by the connection of
Eq.(10). In this case we can synchronize them by
varying the parameter values, in addition to the
connection of Eq.(10). We vary the parameter val-
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Figure 6: Robovie

ues of the S2-M2 system as follows:

ky = %sin(z;"1 — 2% (11)
ko
az = kQ(O) 02(0) (12)

where k» is the connection parameter of the S2-
m2 system, as is the Arnold equation parameter
of the S2-m2 system, and 7 is a positive constant.
k2(0) and a2 (0) denote initial values of k» and as
respectively.

Figure 5 shows an example of behaviors of the
system with varying the parameter values. In
this example, we added the parameter varying by
Eqs.(11) and (12) from ¢ = 50. Figures (a) show
trajectories of the systems. The top figures in (a)
show projections of the trajectories to the zi-z3
plane, where the top left shows the trajectories
of the S1-M1 and the top left shows those of the
S2-M2. The bottom left figure in (a) shows trajec-
tories of S1 and S2, and the bottom right shows
those of M1 and M2. Figures (b) show z*! — 252
(left) and z™! — 2z™2 (right). Figure (c) shows
variations of as and ks by Eqs.(11) and (12). As
seen in the figures, the period of the S2-M2 comes
close to that of the S1-M1, and motions of the two
pairs synchronize without change in shape of the
synchronized orbits.

5. Experimental Results

We have applied the proposed method to a robot
and conducted some experiments. We used a
robot called Robovie[9], which has two arms (4 x 2
DOF), a head (3DOF), a mobile platform (2 driv-
ing wheels and 1 free wheel), and various sensors
(two eyes, skin sensors covering the body, tactile
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Figure 7: Behavior control of Robovie using dynamical
synchronization

sensors around the mobile platform, an omnidirec-
tional vision sensor, two microphones and ultra-
sonic sensors). Fig.6 shows the Robovie.

We applied the method proposed in Sect.4. to
the Robovie as shown in Fig.7. Periodic motions of
the robot are controlled using synchronization in
the coupled Arnold equations. In our experiments,
we considered controlling 11 DOF motions of the
arms and the head. As shown in Fig.7, z», the out-
put from the motor system, is mapped to the refer-
ence 04 for the robot motor controller by the map-
ping h . 6, sensory signal from the potentiometers
are mapped to Z> by g, and inputted to the sensor
system. For the mappings g and h, we used the
partition nets proposed by MacDorman[10], which
realize efficient learning of neural networks.

We designed two pairs of the sensor-motor sys-
tem, S1-M1 and S2-M2, for the Robovie. The S1-
M1 system controls 4 DOF motions of the right
arm, and the S2-M2 system controls 7 DOF mo-
tions of the left arm and the head. We obtained the
mapping ¢, for the S1-M1 system which maps two
patterns of periodic robot motion to two patterns
of the synchronized Arnold flows, which are shown
in Figs.8 (pattern A) and 9 (pattern B). That is, g
maps the robot pattern A to the Arnold pattern A,
and also maps the robot pattern B to the Arnold
pattern B. We also obtained h; for the S1-M1, g
and h2 for the S2-M2 in the same way.

In Figs.8 and 9, (a) shows the periodic pattern
of the Arnold flow, and (b) shows the pattern of
robot motion. Parameters of the coupled Arnold
flows in Figs.8(a) and 9(a) were set as follows:
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(a) Arnold flow

(b) Robovie

Figure 8: Robovie: training data 1 (Pattern A)

Pat.A :
Pat.B :

a=(0.25 —0.15 0.25)7, k, = 0.1038
a= (025 —0.15 0.25)7, k, = 0.046

Note that the connection parameter value of Pat.B
is different from that of Pat.A. In (b), solid lines
show the motions of the right arm joints for the
S1-M1 system. Broken lines and dotted lines show
the motions of the left arm and the head joints for
the S2-M2.

Motions of the Robovie were generated by using
synchronizations in the S1-M1 and the S2-M2, and
applying the interactions between the two systems.
Figs.10 and 11 show an example of generated mo-
tions. In this example, the connection parameters
in the two systems were set as ky = kp and k2 = k,.
The interaction was applied between M1 and M2,
and the parameter varying was applied to the S2-
M2 from step =~ 260.

Fig.10(a) shows trajectories of the Arnold flows,
where the bottom figure shows trajectories of M1
and M2. Fig.11 shows the resultant robot motion.
As seen in the figures, the S1-M1 was attracted
to Pat.B and the S2-M2 was attracted to Pat.A
respectively. Although the motions of Pat.A and
Pat.B had different period lengths, the two sys-
tems were successfully synchronized by the param-
eter varying in addition to the interaction between
M1 and M2.

(b) Robovie

Figure 9: Robovie: training data 2 (Pattern B)

6. Conclusion

In this paper, we studied on information process-
ing of robot using synchronization in nonlinear dy-
namical systems. We designed a dynamics based
information processing system by which periodic
motions of robot are controlled, using synchro-
nization in the coupled Arnold equations. In the
proposed method, we can separately design syn-
chronized patterns of the dynamical sensor-motor
system and motion patterns of the robot. Experi-
mental results illustrated the usefulness of the pro-
posed method.

We consider that such dynamics based informa-
tion processing provides a framework such that the
dynamics of body and the dynamics of information
processing can be merged, and it would be a basis
for a robot intelligence.
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