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Abstract As Asada et al. advocated [5], building a robot which

Adaptability to the changes in the environment and thacquires the body representation may also enable to
robot body itself fundamentally depends on the robot bodjfovide a constructive model of acquiring process of
representation, which is usually given by the designer aiPdy scheme/image in human being, and understand-
therefore fixed in many cases. In order for the robot to adaltd how it works may lead a new design principle of
its body representation to the changes, the robot should h&@0ts at the same time.
acquired its own body representation by itself. This paper How to find out the body representation in the re-
argues how the robot can construct such representation, theptive field without any interpretation by the designer
is, body scheme or body image from the uninterpreted rol® one of the most fundamental problems of acquir-
sensory information. Supposing that the invariance in multhg the body scheme. Asada et al. suggested which
sensory data represents the body, a cross modal map is file robot body or static environment can be defined in
posed as the structure which learns the invariance. A pr@-way that notes the changes in the image plane that
liminary experiment to learn to represent the body surfacean be directly correlated with the self-induced mo-
of the robot by the cross modal mapping between vision atdr command [6] . However, discrimination between
proprioception is performed and future issues are discusseithe robot body and static environment was not dealt.

Fitzpatrick and Metta also proposed a similar method
1. Introduction to localize its arm position in the vision by utilizing
the correlation between optic flow and its motor com-

In the existing methods, the designer usually definmands [7]. Although they claimed that the robot found

'R arm without any knowledge about visual appear-

the representations of the robot body in the Cartes%rﬁce, there seemed a tacit assumption that the designer

coordinate system and needs to calibrate the relatlonné ded to give a prior knowledge about the properties

ship between the sensorimotor system and the deﬁnO its DOFs responsible for the camera motion in or-

coordinate system. Therefore, it seems difficult forthg  to avoid difficulty of discriminating between the

robo.t to adapt itself to the changes in the enwronmeno?bot body and static environment. These studies im-
and its own body. In order for the robot to have suc

a capability. it seems a promising anproach to rovioDe"ed that the method based on the correlation with the
P Y: P 9 app P motion needed some prior knowledge to find its body

the robot with a mechanism of acquiring represent?- .
. : L ) : rfom the correlation.
tions of its body in its sensorimotor space instead o

the pre-defined body representation by the designer. Insref\d of ftlrr:d;ng itst_ body represenﬁtri]o? :rzon; tf(;e
Although it is a formidable problem, biologicalCorrealon with 1ts mofion, we suggest that the body

) ) . .(han be defined by the invariance in the multi-modal
agents seem o acquire their body representation WItse'nsor data caused by the fact that the sensors are em-
out any difficulty. There are studies about the body re y y

resentations of biological agents, calleddy scheme Bedded in the rigid robot body while the motion plays

. a roll of leading experiences to perceive the invariance.
or body imagd1, 2, 3, 4]. Although the structure andV\{hen the robot body is captured in some areas of the

acqumr;fg prc:ccesstr(?f theT 2§1ve notldbgenhrelzvfeillted yFeteptive fields, a kind of relation among them is in-
suggestions from ese studies could be NEIPIUITO COR i i \vith the environmental changes since the body
struct the body representation f_or rqbots since biolo tructure usually does not change in a certain period.
|cgllagents seem in the same situation without any € the other hand, when the captured areas are not
plicit knowledge about their own body representationq ronot body, the relations among the receptive fields
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of the multi modalities depend on the environmental

changes. Therefore, the robot can find its body by T o
judging whether the multi-modal relation is invariant
or not.

According to this idea, Yoshikawa et al. proposed a
cross modal map which learns to represent the invari-
ance of the cooccurrence of the multi sensor modalities
as the synaptic connections of fully-connected network
of the sensor nodes [8]. However, they assumed tH:égur_e 1: '_I'he invariance/variance_of the_ relatio_nship among
the visual patterns were segmented by the designer.“?ﬁ disparity and the postural configuration in different envi-
this paper, we begin with the problem how to find odf"™Ments () and (b)).
the body surface in the receptive field of vision. We
introduce a cross modal map by which the robot learns
the invariance in the multi modalities. Based on it, theensor vector, the hardwired sensor nodewith a
robot learns to judge whether the fixating area is ifrototype vectoer; outputs an activation,; given by
body or not. the equation,

The rest of this paper is organized as follows. First,
we introduce the cross modal map between the vi-

sual and the proprioceptive modalities, and describeere ||« — ;|| is the distance of the vectors, is a
learning process of it. Then we show the preliminarycalar constant. The synaptic weight between node

experiment using the upper-torso humanoid robot, anénd;; is updated according to the following equation,
discuss our future work.

@) (b)

a; = exp(||x — x| /0?), 1)

Tli),'j = —w;; + ca;a;, (2)

2. Cross modal map learning wherer is a time constant of learning,is a learning
rate. Based on the updating law (eq. (23), is con-

In this section, we describe our basic idea to find theerged such as

body of the robot and introduce the general structure

called cross modal map which learns to represents the wij = cE{a;a;}, 3)

robot body. Then, we implement a cross modal ma

between the sensors of postural configuration and t J - - :

disparity in the stereo vision in order to find the reprev-ve use the discretizing version of the updating low (eq.

sentation of the body surfaces. (2)) such as,

gereE{aiaj} is the average of;a; [9] . Actually,

21 Abasiciden w6+ 1) = wigt) + —(as(V)as(0) — cwiy (1)), (@)

' _ wheret denotes the time stamp.
Multi modal sensors of the robot are related with each Based on this leaming low, only the synaptic

other fswrl]ce tTey aredembegded mh its body although,aights between the nodes which are simultaneously
part of the relations depends on the environment. FQLyjated in a certain period are increased. Therefore,

example, vyhen it fixates one quect in the gnviror}he connections which have large synaptic weight rep-
ment, the view changes depending on the environmel it the body.

tal changes. However, when it fixates its body, the view
is independent of the environment (see Fig. 1). Ourb
sic idea in order to find a representation of the body

learning the invariance of the relation among the multi
modal sensors in a certain period. That is, what is apUPPOse that a robot has DOFs and stereo cameras,
ways observed s its body. and that the center of the left camera is an fixation

As a structure to find the invariance in the muItPO'nt‘ Let the disparity of the fixation point beand

modalities, we introduce a full-connected net\NorHqe postural conflgurqtlop of |t.b{é.e R ..W.hen the
called cross modal map. A cross modal map consi gsture of the learner &, if the fixation point is on the

of various sensor nodes which are hardwired to reﬁ sdeﬁ gr:ZanoensS;gP;Ii?f\;ergr:I g:]eesegggr;rizenlt) Czig(g)fds’
sensor units and have prototype vectors with specit . N o )
P yP P to this idea, the learner can find its body where the

dimension (see Fig. 2). When real sensors output ) L .
( g- 2) P relation betweer and@ is invariant.

%-2. An implementation of a cross modal map
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d The disparity
sensor

The posture
sensor

Figure 2: Elements of the cross modal map, whegek,and Figure 3: An overview and an egocentric view of the upper-
1 define ID of nodesd, 8 denote the type of hardwired sen-torso humanoid robot and the environment of learning.
sors, andw denotes the synaptic weights. Heigndj are

disparity nodes whilé& and! are posture nodes.

(a) An overview (b) An egocentric view

arandom
movement
generator

arandom

A cross modal map consists of the two types of sen- | movement =
sor nodes (see Fig. 2). A “disparity nodd?) hard- generoior
wired to the sensor of the disparity of the fixation point
has a prototype vectois (d;), as well as a “posture  Figure 4: An overview of the experimental system.
node” k(1) hardwired to the sensors of the postural
configuration has a prototype vectdy, (0,).

By learning through the experiences to fixate vario
objects and moving around, only the synaptic weigh

between the nodes which are activated when the fix- i . ) )
ation point is on its body are increased. Therefor&S mentioned in the section 2, the robot will learn

it can judge whether the fixation point is its body of€ cross modal map through the experiences of fix-
not by checking whether the synaptic weight betweéHing various objects and moving around in the envi-
the postural node corresponding to the current postuf@nment independent of its DOFs. We shows a section

configuration and a disparity node is sufficiently largf the acquired cross modal map in which the postu-
ral configuration of the arms is a certain values (see

Fig. 5), since the acquired one which consists of the
high dimensional posture nodes is not comprehensible
for the experimenter. Fig. 5 shows which disparity
We use upper-torso humanoid robot (see Fig. 3bde have the largest connection with which posture
for preliminary experiments. Based on the proposeghdes as a function of the disparity with respect to an-
method, it learns a cross modal map that representsgigs of the camera head. The range of the disparity
body surface through experiences to fixate the variogs — —128 ~ 128)) is divided into15 prototype vec-

proprioceptive units

s'2' Learning process and a result

3. Experiment

objects and move around in the environment. tors of the disparity nodes, and the range of the angles
(pan = —45 ~ 45[deg], tilt = 10 ~ 70) is divided
3.1. Experimental setup into 20 x 15 vectors which is the elements of the pos-

ture nodes. In the learning process, the random control
The robot has two cameras (SONY, CCB-EX37)ignals are sent to the camera head to fixate the various
stereo-camera head which rotates in the panftilt/rdiPints and the mobile base to move around for about
axes, a couple of 4-DOF arms, and a PC (Pentium3iX minutes. The weights are updated 5875 times.
400MHz) to control them. They are on a mobile base Fig. 5 is similar to one of the robot body which is
(Nomad150) which has facilities to moving aroundobserved in the real view of the robot (see Fig. 3b).
Fig. 3b shows a view of it. The disparity of the fix-The fixation areas of which disparity nodes have strong
ation point is calculated in every frame when the bottonnections (large weights) to the posture nodes were
camera captures the same object. parts of the robot body. Therefore, the acquired cross
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modal map represents the body surface of the learnéntegrate the multi sensor modalities including tactile
and the task performing and evaluating system.
]
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Figure 5: Activations of the disparity nodes of the acquiregzeferences
map.
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