
On-Line Dynamic Obstacle Avoidance

Zvi Shiller

Mechanical Engineering-Mechatronics, College of Judea and Samaria

Ariel, 44837, Israel, shiller@yosh.ac.il

Abstract

This paper presents an eÆcient algorithm for on-

line dynamic obstacle avoidance. The robot tra-

jectory (path and speed) is generated on-line by

avoiding obstacles optimally one at a time. The

resulting planner converges globally to the goal,

and is applicable to any cost function and to any

robot models. It is demonstrated here for short-

est paths and minimum time motions for a point

robot moving in the plane.

1. Introduction

To avoid obstacles, humans follow what appears

to be the negative gradient of a potential �eld by

treating the goal as an attractor, and obstacles

as repellors [14]. They select trajectories that are

consistent with an on-line "dynamic control strat-

egy" [14], meaning that their motions are smooth

and respect some system dynamics. This recent re-

sult validates on-line strategies for obstacle avoid-

ance that have been used by the robotics commu-

nity for quite some time since the inception of the

potential �eld approach [3, 2, 8], and the more re-

cent incorporation of robot dynamics in the on-line

obstacle avoidance problem [12].

In this paper we review an on-line obstacle

avoidance strategy that combines a potential �eld

approach with robot dynamics, and seems applica-

ble to on-line trajectory planning of complex sys-

tems such as humanoids moving through cluttered

environments. The simple trajectories followed by

humans despite the high complexity of their dy-

namics suggests that similar simpli�cations can

be used for on-line obstacle avoidance of mobile

robots, as well as of humanoids.

The avoidance strategy presented here is based

on following the direction of steepest descent along

the value function, which represents the cost-to-go

to the goal from any given state [1]. The value

function reects the cost function being consid-

ered, has a unique minimum at the goal, generates

globally optimal trajectory, and is hence an ideal

potential function.

The value function is diÆcult, if not impossible,

to compute for a large number of obstacles and

for "dynamic" cost functions (that require system

dynamics) such as motion time and energy. We

circumvent this diÆculty by a) decomposing the

problem into the avoidance of one obstacle at a

time, and b) by computing the optimal direction

locally without actually deriving the value func-

tion. It is shown that despite these simpli�cations,

the resulting "potential �led" has a unique mini-

mum regardless of the cost function being consid-

ered and the number of obstacles.

In contrast, traditional potential �eld methods

[2, 3, 4, 5, 6, 8, 13] typically do not attempt to

optimize a speci�c cost function, and some su�er

from local minima [3].

There are currently no comparable on-line plan-

ners that consider robot dynamics and attempt to

minimize a "dynamic" cost function. The closest

approach is Lumelsky's sensor-based planner that

accounts for robot dynamics [10]. This planner

moves dynamically (considering robot dynamics)

between via points, selected kinematically using a

simple bug algorithm.

We make no attempt to quantify the optimality

of this planner as it is problem speci�c and hence

meaningless as a measure for general applications.



Anecdotal numerical experiments show close corre-

lation between the on-line and the global optimal

trajectories. Although the on-line planner does

not generate the optimal trajectory, it does gener-

ate a "good" alternative to the exact solution of

the original problem.

2. Problem Formulation

We wish to minimize the cost function:

min
u

Z
tf

0

L(x; u) dt+ b(d) (1)

subject to the autonomous (time-invariant) system

dynamics:

_x = f(x; u) ; x 2 R
n ; u 2 
 � R

p (2)

actuator constraints:

juij � 1 ; i 2 f1; � � � ; pg (3)

state dependent constraints:

g(x) � 0 ; 2 R
m (4)

and boundary conditions:

x(0) = x0; x(tf ) = xf (5)

where tf is free, L(x; u) 2 R is a positive cost func-

tional, f(�; �) is di�erentiable in both arguments,

the set of feasible controls, 
, is bounded and con-

vex, m is the number of obstacles, b(�) is a barrier

function of the form

b(d) = ��log(d); (6)

d is the minimum distance to any obstacle along

the optimal path, and � > 0 is a small penalty fac-

tor. The barrier function is used to ensure that the

path does not graze any obstacle, and to repel it

from potential traps (regions from which collision

is unavoidable).

3. The Hamilton-Jacobi-Bellman

Equation

A suÆcient condition for the time-optimal con-

trol problem (1), known as the Hamilton-Jacobi-

Bellman equation, is stated in the following theo-

rem:

Theorem 1 [7]: The control u�(x) is the solution

to the optimal control problem for (1) if it satis�es,

on Rn � fxfg � I, the HJB equation:

min
u2


fvt(x; t)+hvx(x; t); f(x; u)ig = �L(x; u); (7)

subject to (4), where v(x; t) is a continuous scalar

function, which is piecewise C2 on Rn�fxfg�I,

satisfying

v(xf ; t) = 0 (8)

v(x; t) > 0 ; x 6= xf (9)

and I is the set of infeasible states:

I = fx : g(x) < 0g: (10)

The subscripts x and t represent partial deriva-

tives with respect to x and t, respectively. For au-

tonomous systems and �xed terminal conditions,

v is not an explicit function of t. Hence, vt = 0.

The value function v(x) represents the minimum

cost-to-go from x to xf . The optimal trajectory

is generated by selecting the control u that mini-

mizes the time-derivative, _v(x) = hvx(x); f(x; u)i,

of the value function, where < �; � > denotes the

inner product on Rn. This trajectory is globally

optimal, and is guaranteed to reach the goal, xf ,

since similar to Lyaponov functions, _v(x(u�)) can-

not vanish anywhere but at xf .

Note that _v(x) is minimized when f(x; u) = _x

points opposite of vx(x), the negative gradient of

the value function. This is similar to a poten-

tial �eld approach, which generates the trajectory

by following the negative gradient of the potential

function. The value function can thus be viewed

as a potential function that generates the optimal

trajectory.

Treating the obstacle avoidance problem in the

context of the HJB equation allows us to prove

convergence using the properties of the value func-

tion. It also allows us to generalize this approach

to any cost function because these properties ap-

ply to any functional optimization problem. So

far, we have used this approach for the shortest

path [11, 9] and the minimum time [12] problems.

4. The Obstacle Avoidance Strat-

egy

Observing that the e�ect of an obstacle on the

value function is local, we treat the multi-obstacle

problem by avoiding obstacles optimally, one at



OB1

OB3

OB2

x0

xf
p1

p2

Figure 1: The avoidance procedure

a time. The avoidance procedure is simple: at-

tempt to go straight to the goal. If the goal is ob-

structed by obstacles, pick the "largest" (in term

of the cost function), avoid it until it no longer ob-

structs the goal, or until another obstacle become

the "largest." Switch to the "largest" obstacle and

repeat until reaching the goal.

This procedure is illustrated in Figure 1 for the

avoidance of three obstacles, where the goal is ob-

structed from the initial state, x0, by two obsta-

cles: OB1 and OB2. Let the obstacle-free optimal

time from x0 to xf be 1 s, the optimal time avoid-

ing OB1 be 2 s, and optimally avoiding OB2 be 1:5

s. OB1 is, therefore, the "largest" obstacle, and

hence selected to be avoided �rst. This obstacle is

avoided until reaching some point p1, from which

avoiding OB3 takes longer than avoiding OB1 or

OB2 to the goal. At that point, OB3 becomes

the "largest"' obstacle, and is avoided next until

reaching some point p2, from which xf is reachable

by an unconstrained optimal trajectory.

This procedure is summarized in the following

algorithm.

Algorithm 1: On-line obstacle avoidance

Initialize Set x = x0. Select the termi-

nation condition �, and time step �t.

Step 1. Given x and xf , determine the

"largest" obstacle, OBk . If k = 0, go to

Step 3. Compute the optimal trajectory

avoiding OBk to xf .

Step 2. Follow the optimal trajectory

for some time step �t.

Update x.

If jjx� xf jj � �, STOP.

Go to Step 1. 2

Algorithm 1 assumes that the "largest" obsta-

cle obstructing the goal is known at any given

time. This restriction is not unreasonable since

it is unrealistic to avoid obstacles dynamically (at

various speeds) without knowledge of the obsta-

cles ahead, as it is unrealistic to expect a hu-

man to run through a cluttered room blindfolded.

The avoidance strategy of a "blind" robot would

dictate kinematic avoidance at low speeds that

passes through selected via points along the ob-

stacle boundaries [9].

5. Implementation

The implementation of Algorithm 1 requires sev-

eral computational routines:

� computation of the unconstrained optimal

trajectory from any state to the goal,

� determination of an obstructing obstacle from

an

6. Convergence

Global convergence of Algorithm 1 can be

proven for a point robot and general obsta-

cles, satisfying the following assumptions:

Assumption 1: The free-space is connected

(no obstacles with holes).

Assumption 2: The obstacles are compact

sets, do not intersect one another, and do not

include the goal.

Assumption 3: The minimum distance be-

tween any two obstacles is greater than some

constant � > 0.

Assumption 4: The number of obstacles is

�nite.

Assumptions 1 and 2 guarantee existence of a

kinematic solution; Assumption 3 establishes

a minimum distance, or time, to collision af-

ter having avoided an obstacle; and Assump-

tion 4 ensures that the worst case number of

switches is �nite.

Theorem 2: The trajectory generated by

Algorithm 1 is guaranteed to terminate at

xf in a �nite time for all initial states x0 2

Rn � fxfg � I (I de�ned in (10)).

Proof: The proof is based on the properties

of the value function. Recall that the value

function for a single obstacle satis�es the HJB

equation (7). Rewriting (7) yields:

min
u2


_v(x; u; t) = �L(x; u) (11)



or

_v(x; u�(t)) = �L(x; u) < 0 (12)

where u� denotes the optimal control. Since

v(x; u; t) is positive and �nite for all feasible

states x 6= xf , (12) implies convergence to

xf , where v(xf ) = 0. In other words, the

optimal trajectory avoiding a single obstacle

monotonically reduces the value function until

it reaches xf . The convergence time to xf is

by de�nition the value of the value function

at the current state.

The trajectory generated by Algorithm 1,

x(t), switches to the value functions of the

largest obstacles, selected globally to attain

the maximum of all value functions at each

point along x(t). Since each value function

monotonically decreases along x(t), it remains

to show that the number of switches and the

time to each switch are �nite.

The selection of the largest obstacle as soon

as it exceeds the value function of the for-

mer obstacle ensures that the value function

along x(t) does not increase at the switching

points. If �t is the time between two consecu-

tive switches, then by the properties of the in-

dividual value function, the augmented value

function '(x(t); xf ) monotonically decreases:

'(x(t +�t); xf ) < '(x(t); xf ) (13)

The size of each �t is a function of the dis-

tance between the obstacles and robot speed.

Assumption 3, and assuming a bounded

speed, implies �t > 0. That �t is not zero

and (12) precludes chatter without a reduc-

tion in cost. �t is bounded by the maximum

cost (the time to avoid the costliest obstacle)

at the initial point. The number of switches

is bounded by the number of obstacles, which

is assumed to be �nite. Note that loops are

not possible since any loop would violate (13).

This establishes that the number of switches

and the time between switches are �nite.

Since by construction, '(x(t); xf ) is positive

and �nite for all feasible states x 6= xf , it

follows that the augmented value function,

'(x(t); xf ), vanishes after a �nite number of

steps:

'(x(t+ ��t); xf ) = 0 (14)

where � is a real integer. Since '(x(t); xf )

vanishes only at xf , (14) implies x(t+��t) =

xf , or that Algorithm 1 reaches the goal in a

�nite time. 2y state to the goal,

Goal#1

#2

#3 #4

Figure 2: Near-shortest paths avoiding 100 circu-

lar obstacles

� computation of the constrained optimal tra-

jectory that avoids a single obstacle from any

state to the goal,

� determination of the "largest" obstacle.

The most challenging part of this approach is the

optimal avoidance of a single obstacle. It is used

to avoid an obstacle, and to evaluate the "largest"

obstacle at every time step. Optimally avoiding an

obstacle for the shortest path problem is a simple

geometric task. Optimally avoiding an obstacle

for the minimum time problem is not as trivial,

but it can be formulated as a line search over one

parameter (for details see [12]).

7. Examples

The following examples demonstrate Algorithm 1

for the kinematic (shortest path) avoidance of con-

vex and general polygonal obstacles, and dynamic

(minimum time) avoidance of convex planer obsta-

cles.

7.1. Example 1

Figure 2 shows four paths computed on-line us-

ing the shortest path cost function through a clut-

tered space containing 100 circular obstacles. The

computation times for each path varied around



Goal

Figure 3: Near-shortest paths avoiding planer

polygonal obstacles

10 � 20ms. The paths are very close to the

straight lines from each initial point, and are there-

fore near-optimal. They also pass between closely

spaced obstacles, which would be infeasible for

typical potential functions. Further, increasing the

number of obstacles had very little e�ect on the

computation time.

7.2. Example 2

Figure 3 shows 18 planar polygonal obstacles and a

path computed on-line using the shortest path cost

function. It was assumed that the robot recognizes

the "largest" obstacle from every point.

7.3. Example 3

Figure 4 shows the dynamic (minimum time)

avoidance of 100 circular obstacles by a point mass

robot with actuator constraints. The spacing be-

tween the dots represents the speed along the path.

The total computation time for the path was about

7 s, approximately 0.1 s per step.

8. Conclusions

This paper reviews an on-line planner that is sim-

ilar to potential �eld methods, except that it fol-

Figure 4: Dynamic avoidance of 100 circular ob-

stacles

lows the value function, which we view as the "op-

timal" potential function, it has no local minima,

and is applicable to any cost function and any

robot dynamics. It is currently the only on-line

planner that considers robot dynamics while at-

tempting to minimize a dynamic cost function.

The planner is based on decomposing the multi-

obstacle avoidance problem into the optimal avoid-

ance of many single obstacles. The planner was

demonstrated for a point robot avoiding general

polygonal obstacles, and a point mass robot avoid-

ing a large number (100) of circular obstacles, us-

ing the shortest distance and minimum time cost

functions, respectively. Although this approach

does not guarantee optimality, numerical examples

demonstrate close correlation between the on-line

solution and the global optimal paths. This ap-

proach is applicable to mobile robots moving at

moderate to high speeds, and for generating ref-

erence trajectories for more complex systems such

as humanoids moving through cluttered environ-

ments.

References

[1] L. Cesari. Optimization - Theory and Appli-

cations: Problems with Ordinary Di�erential

Equations. Springer-Verlag, New York, 1983.

[2] C. I. Connoly, J. B. Burns, and R. Weiss.



Path planning using laplace's equation. IEEE

Conf. on Robotics and Automation, Cincin-

nati, OH, 1:2102{2106, 1991.

[3] O. Khatib. Real time obstacle avoidance for

manipulators and mobile robots. Int'l Journal

of Robotics Research, 1:65{78, 1986.

[4] P. Khosla and R. Volpe. Superquadric ar-

ti�cial potentials for obstacle avoidance ap-

proach. Proc. IEEE Int'l Conference on

Robotics and Automation, 3:1778{1784, 1988.

[5] J. O. Kim and P. Khosla. Real time obstacle

avoidance using harmonic potential functions.

Proc. IEEE Int'l Conference on Robotics and

Automation, 1:790{796, 1991.

[6] D. E. Koditschek and E. Rimon. Robot navi-

gation functions on manifolds with boundary.

Advances in Applied Mathematics, 11:412{

442, 1990.

[7] A. I. Moskalenko. Bellman equations for op-

timal processes with constraints on the phase

coordinates. Automation and Remote Con-

trol, 4:1853{1864, 1967.

[8] E. Rimon and D. E. Koditschek. Exact robot

navigation using arti�cial potential functions.

IEEE Trans. on Robotics and Automation,

8:501{518, 1992.

[9] Z. Shiller. On-line sub-optimal obstacle avoid-

ance. International Journal of Robotics Re-

search, 19(5):480{497, May, 2000.

[10] A.M. Shkel and V.J. Lumelsky. The jogger's

problem: Control of dynamics in real-time

motion planning. Automatica, 33(7):1219{

1233, 1997.

[11] S. Sundar and Z. Shiller. Optimal obstacle

avoidance based on suÆcient conditions of op-

timality. IEEE Transactions of Robotics and

Automation, 13(2):305{310, 1997.

[12] S. Sundar and Z. Shiller. Time-optimal ob-

stacle avoidance. IEEE Int. Conf. on Robotics

and Automation, pages 3075{3080, May 1995.

[13] R. Volpe and P. Khosla. Arti�cial potentials

with elliptical isopotential contours for ob-

stacle avoidance. Proc. IEEE Int'l Conf. on

Robotics and Automation, 3:1778{1784, 1987.

[14] D. Belcher W. Warren, B. Fajen. Behavioral

dynamics of steering, obstacle avoidance and

route selection. Journal of Vision, 1(3), 2001.


	amam: Proceedings of the 2nd International Symposiumon Adaptive Motion of Animals and Machines,Kyoto, March.4-8, 2003
	paper-no: SaP-II-3


