
A Motion Learning Method using CPG/NP

Fumio Nagashima1

1Fujitsu Laboratories, 10-1, Morinosato-Wakamiya, Atsugi 243-0197, Japan shiro@stars.flab.fujitsu.co.jp

keywords: Central Pattern Generator CPG, Numerical Perturbation NP
Recurrent Neural Network RNN, Motion Generation

Abstract

I propose a motion learning method for a robot us-
ing a Central Pattern Generator with Numerical Perturba-
tion(CPG/NP). The Central Pattern Generator(CPG) is mod-
eled as a sub circuit of Recurrent Neural Network(RNN).
Numerical Perturbation(NP) determines coefficients for each
perturbed order RNN, step by step. System inputs are a mo-
tion outline, the direction of perturbation and some pieces
of advice. The experiments using HOAP-1 indicate that this
method can generate a variety of motions, however, the cal-
culation time dramatically decreases.

1. Introduction

Recently, there have been several studies about human
friendly robots or humanoid robots. I can imagine a scene
where a humanoid robot is working along side a human and
performing several tasks [1]. And it is possible they will be
able to perform a great variety of tasks. To create a software
system for such a state requires a lot of software engineers
and time, because the engineers must analyze the tasks and
create algorithms for their particular target tasks. Then we
must consider the efficiency of creating a software system.
One way to keep the cost down for such software is to cre-
ate middle-ware for robot software. Some researchers stand
by this viewpoint. This is not only the way for future robot
software, but also a learning is.

The back propagation (BP) of the Layered Neural Net-
work (LNN) and Genetic Algorithm (GA) are known as the
learning system. BP is a powerful method for finding a solu-
tion for an LNN, while a GA is useful for any problems with
a large parameter space and has a capability to find a global
minimum. However, the BP is only for use with an LNN and
a GA requires a lot of time.

I assume that a motion, such as walking, is governed
by a non-linear equation system. Some researchers try to
solve these equations using a numerical calculation tech-
nique, while others try to do so using their own experiments.

In this paper, I discuss a robot motion learning system us-
ing a Central Pattern Generator (CPG) [2, 3] with Numerical
Perturbation (NP). The CPG is defined by Recurrent Neural
Network (RNN) sub circuits and the NP determines the co-
efficients of the RNN circuit, step by step. Fig.1 shows the
strategy for this method and an outline of the system using
this method is shown in Fig.2.

Figure 1: Strategy of the Proposed Method

Figure 2: Outline of the Proposed System



2. CPG model

2.1. RNN model

I use 4 assumptions to make a RNN model. The most im-
portant assumption is “delay”. To create a pattern, we need
something time related in a neural network. There are several
methods to consider in regards to time. For example, the dif-
ferential relationship, the difference relationship between the
state which has different time. Or we can convert a space re-
lationship to time relationship. I chose a simple analog delay
for such a purpose, as follows:

εi
dVi

dt
+ Vi = input. (1)

WhereVi is neuron value,εi is delay,t is time,input is an
input to the neuron andi is neuron ID number. Fig.3 shows
the the non-delay neuron model. It is permitted to haveεi

equal to zero. I call such a neuron “dead neuron”. In this
case, any connections of neurons cannot generate a variety
of outputs. Fig.4 shows the work of the simple analog delay.
The equation of this is

ε1
dV1

dt
+ V1 = V0. (2)

Next two assumption are “multiplication by constant” and
“summation”, as follows:

εi
dVi

dt
+ Vi =

n∑
j=1

CijVj . (3)

Using these assumptions, a RNN circuit can be created as
shown in Fig.5. The equations of this circuits are obtained
using the balance of each neuron as





ε1
dV1

dt
+ V1 = C12V2 + V0,

ε2
dV2

dt
+ V2 = C21V1.

(4)

These equations can be reduced to the relationship be-
tweenV0 andV1,

ε1ε2
d2V1

dt2
+ (ε1 + ε2)

dV1

dt
(1− C12C21)V1 = V0. (5)

This shows the simplest RNN circuit that can generate
some useful patterns for motion. This circuit has four types
of output which depend on its coefficients, the curve increas-
ing rapidly, being almost linear except origin, the curve in-
creasing slowly and decreasing vibration as shown in Fig.6.
There are several kinds of circuits that can generate special
functions.

The last assumption is “switch”. I assume that a neu-
ron can control the connection weight between neurons in
a lower layer as

εk
i
dV k

i

dt
+ V k

i =

n∑
j=1

Ck
ijV

k
j , (6)

Figure 3: Information without Delay

Figure 4: Information with Delay

Ck
ij =

{
const
or

V jl(k < l).
(7)

Because it is important to keep the network understand-
able at the beginning of research, two way communication
between layers are not permitted. It is not necessary to con-
sider the non-linear effect to generate a motion in a non-
linear environments as shown in the section 3. As well, some
threshold is used to realize digital effect, e.g., a play of joint.

The proposed RNN circuit can generate useful patterns for
control. See appendix A for a some examples. An RNN
based on 4 assumptions can create a variety of equations for
control.

2.2. CPG model

Some RNN circuits can create special functions such as sine
and polynomial functions as shown in Table 1. And they
also can create the solution of variable coefficient equations.
These RNN sub circuits can generate a group of functions.
I call these RNN sub circuits “CPG” and the group “CPG
function group”.



Figure 5: Simple RNN Circuit

Figure 6: Output of Simple RNN Circuit

Table 1: Typical CPG examples
function RNN circuit note

sin ωt,
cosωt

ω = C/ε

sin ωt,
cosωt

C=

12 3√−108+12
√

93

/(12−(−108

+12
√

93)2/3)

polynomial C0+C1t+C2t2

To make the software for RNN, if I use the matrix cal-
culation for the simulation and execution of RNN, the sys-
tem needs a lot of memory space and the empty calculations.
To avoid such a losses, I design the language for describ-
ing RNN. An input/output terminal such as sensor/motor can
be thought as one of the neurons. Examples of the typ-
ical CPGs written in this language are shown in Table 2
Zaier,Nagashima [4] use this language for showing how it
works.

3. NP method

3.1. Perturbation method

The perturbation method is well known method for getting
approximate solutions of non-linear equations system. The
perturbation method is employed in astronomy, fluid dynam-
ics and by other theoretical researchers, to obtain approx-
imate solutions to non-linear equation systems. They use
polynomials or eigen function series which are suitable for
their own equation system to get the approximate equations
and solutions. In some cases, they use Fourier expansion in
perturbation method.

3.2. NP method

I use an idea of perturbation method for obtaining motion. I
assume the motion is a solution of non-linear equation sys-
tem. If I get the complete equation system for a motion, the



Table 2: RNN language Examples
RNN circuit RNN language

circuit sin{
var y1(0.1) = 0.0;
var y2(0.1) = 1.0;
y1 := 1.0 * y1 + 1.0 * y2;
y2 := -1.0 * y1 + 1.0 * y2;
}
circuit pol{

var y1(0.1) = 1.0;
var y2(0.1) = 0.0;
var y3(0.1) = 0.0;
y1 := 1.0 * y1;
y2 := 1.0 * y2 + 1.0 * y1;
y3 := 1.0 * y3 + 1.0 * y2;
}

solution can be derived by substituting a series of eigen func-
tions into that equation system and solving each order equa-
tions. However, it is hard to get the complete equation sys-
tem for motion, because the environment is very complex and
changes so often. Then I use the idea of perturbation method
numerically without constructing an equation system. I as-
sume the solution is expressed by

y = δ0y0 + δ1y1 + δ2y2 + δ3y3 + · · · , (8)

wherey is the output of RNN,yi is a function generated
by CPG,δi is a coefficient of orderi. First of all, I determine
the first approximate coefficientδ0 with trial and error using
a lowest order of eigen functionsy0, e.g.,sin ωt.

Next, I determine the higher order eigen functions coeffi-
cientsδ1, δ2, δ3, · · · also by trial and error. Until I can obtain
the motion which can satisfy the intended purpose, I keeps
increasing to a higher order.

The strategy is simple. I use a numerical sum of lin-
ear equations’ solutions generated by CPGs to solve the un-
known non-linear motion pattern equation system. Fig.7
shows the image of simple growing process, The weights of
each connection are determined step by step from lowest or-
der.

4. Learning system outline

4.1. CPG model and NP method

The CPG can generate several type of functions. Some func-
tions are orthogonal to each other. Some functions are useful
to generate motion patterns.

The NP method can narrow down the number of coef-
ficients that must be determined simultaneously, making it
easier to determine coefficients.

Figure 7: Example of NP method

Figure 8: Outline Algorithm of the Proposed Method

4.2. Advises

A learning system needs an estimate function to determine
the RNN coefficient. I use the sum of quadratic value, each
value being an evaluation function, such as a spending en-
ergy, stability of upper body and so on. And I call one of
them “advice”. The learning process is equal to the process
to find a minimum value of the sum of all the advice.

4.3. Learning system outline

Fig.8 shows an abstract algorithm for learning. System input
are some pieces of advice and initial motion, and output is
RNN circuit for motion.

5. Experiments using HOAP-1

HOAP-1, a humanoid robot for research by Fujitsu Automa-
tion Ltd., was used for examining the proposed method. It is
20 DOF robot and has an angular velocities sensor, accelera-
tions sensor in its chest, 4 pressure sensors on the corners of
its foot and 2 cameras on its head. I use only triangular func-



Figure 9: Experiment using HOAP-1

Figure 10: A RNN Circuit Sample for HOAP-1 Experiment

tions and polynomials as RNN generated patterns. All data
from sensors are smoothed using a neuron delay function.
The output from the angular velocities sensor is converted to
upper body angles using RNN circuit. The foot sensors are
used for switching to right or left lifting motion. See refer-
ence [5] for more detail.

As a result, a 2nd order solution is sufficient for walking
on a flat floor, though it is a little bit unstable. I call this
motion “baby walking”. A 4th order solution is stable. It
can almost do static walking. A 6th order solution can go
up/down stairs. I tried testing using the lower order solution
to go up/down stairs but it always fialed. The variation of
motion increases as the NP order increases. Fig.9 shows the
snapshot of experiment. Fig.10 shows the part of RNN for
this experiment. See reference [6] for the movies of these
motions.

6. Discussion

6.1. Comparison with CPG/GA

Because the CPG/GA method determines all coefficient si-
multaneously, they are related with each other. If I want to
determine the new coefficients or just want to modify mo-
tions a little, the calculation requires a lot of time. In this
sub-section, I will discuss the all the search cases of solu-
tions. Assuming the resolution of neuron value and that con-

nection weightn, the sum of neurons and connectionsm, the
total trial number becomesnm with CPG/GA,jnm/j with
CPG/NP.j is the number of orders. For example, in the case
ofn = 16, m = 50, j = 5, I get1.15 × 1073 for CPG/GA,
1.4 × 1016 for CPG/NP. I tried to find a pattern of walking
for HOAP-1 using CPG/GA in experiments but I could not
find it until now.

Furthermore, the estimate function can be changed at the
start of each perturbation order as the number of neurons
changes while learning.

6.2. Comparison with LNN/BP

LNN/BP and CPG/NP are quite different methods. I think
LNN/BP cannot create a reasonable motion and that we must
use the combination of these two methods.

6.3. Comparison with the Newtonian-dynamics based
method

The ZMP method and other Newtonian-dynamics based
method need an inverse solving technique for a non-linear
dynamics equation system of motion. The motion capture
based method also needs a complex mathematical problem
for ZMP compensation. Recently, an approximate method
or some practical method have been established. We need
to discuss and compare about the merits and demerits of the
proposed method and Newtonian-dynamics based methods.

7. Conclusion

In this paper, I propose a robot learning method using
CPG/NP. CPG is defined by an RNN sub circuit and the NP
method determines coefficients of RNN circuit, step by step.
I have shown an outline of learning system and examined this
method using HOAP-1. As a result, this method can gener-
ate a gait patterns including stairs’ walking for a humanoid
robot.

Acknowledgments

I wish to acknowledge the discussion and comments pro-
vided by Dr. Susumu Kawakami and Professor Masafumi
Yano. And I would like to thank Dr. Jiang and Dr. Zaeir for
the assistance with the experiment.

References

[1] Fumio Nagashima, “A Motion Learning using CPG/NP,”
The 20th Annual Conference of the Robotics Society of
Japan(2003, in Japanese).

[2] H. Kimura, Y. Fukuoka. “Adaptive dynamic walking of
the quadruped on irregular terrain-autonomous adapta-
tion using neural system model,” Proc. of the 2000 IEEE,
p.436-442 (2000).

[3] G. Taga. “A model of the neuro-musculo-skeletal system
for human locomotion,” I. Emergence of basic gait. Bio-



Figure 11: Notation Samples of Neural Network

logical Cybernetics, 73(2), p.97-111 (1995).

[4] Zaier Riadh, Fumio Nagashima, “Recurrent Neural Net-
work Language for Robot Learning,”The 20th Annual
Conference of the Robotics Society of Japan(2003).

[5] Jiang Shan, Fumio Nagashima, “Neural Locomotion
Controller Design and Implementation for Humanoid
Robot HOAP-1,” The 20th Annual Conference of the
Robotics Society of Japan(2003).

[6] http://www.automation.fujitsu.com

/products/products076.html (in Japanese)

A RNN circuit

Fig.11 gives a notation samples of the proposed RNN circuit.
It consist of neurons, wires and cables. The neuron has delay
and initial value, the wire is connection between two neurons,
and the neurons can affect to the connection of neurons by
cable.

Because the proposed RNN circuit is the mathematical cir-
cuit in a sense, it can also describe an ordinary controller
such as PD, PID, an integrator and so on. Table 3 shows
some typical examples. Using these circuit, it’s easy to cre-
ate a powerful control software including ordinary methods
and the proposed method using a simple notation without any
expansion. Even if someone wants to create a Newtonian-
dynamics simulator for a controller using this circuit, they
can do it.

It is important to keep the circuit understandable. Using
cable, a user can generate a non-linear equation’s solution
easily but this cable is for variable coefficient linear ODE.
This means the cable is only for inter-layer connection, from
the upper layer to the lower layer, that does not have two-way
communication. The parametric resonance is a typical RNN
example of the inter-layer connection.

Table 3: Some Useful RNN Circuit
RNN Circuit Note

Low Pass Filter

Simple Low Pass
Filter

Integrator

Simple Integrator

PID Controller

Simple PID Con-
troller

Motion Generator
and PID Controller

Ordinary Control
Method PID

Inner Product

for Sensing or
Measurement

Parametric Resonance

d2V
dt2 + ω2(1 +
f(t))V = 0,
ω = C/ε


	amam: Proceedings of the 2nd International Symposiumon Adaptive Motion of Animals and Machines,Kyoto, March.4-8, 2003
	paper-no: ThP-II-3


