
On Nonlinear Dynamics that Generates Rhythmic Motion
with Specific Accuracy

Kei SENDA1 and Tsuyoshi TANAKA2

1Dept. of Aerospace Eng., Osaka Prefecture Univ., Sakai, Osaka 599-8531, Japan, senda@aero.osakafu-u.ac.jp
2Graduate School of Eng., Osaka Prefecture Univ.

Abstract

This paper presents a method to generate rhythmic
and cyclic motions observed in locomotion of animals
or insects by using nonlinear dynamics, e.g., recurrent
neural network (RNN). The proposed method enables
to specify the approximation accuracy of the generated
trajectory to the target trajectory though RNNs cannot
easy to specify it. The method is based on a nonlinear
oscillator generating cyclic motion and a the Fourier
series. The realized dynamics has the desired trajec-
tory as a limit cycle. A realization using neural net-
works is also shown. Effectiveness of the proposed
method is examined by a numerical simulation where
a space robot changes its orientation by the cyclic mo-
tion of the manipulator.

1. Introduction

Rhythmic and cyclic motions observed in locomotion,
fluttering, and swimming of animals and insects are
memorized in their brains or nervous networks. Those
motion memories would not be stored as time histo-
ries but as limit cycles in nonlinear dynamical systems.
For the stable generation of the motion, the cyclic tra-
jectory is requested to be a steady attractor, which
is called a dynamic associative memory (DAM). This
study discusses the methodology to generate the rhyth-
mic and cyclic motions of animals or robots using the
DAMs.

Recurrent neural networks (RNNs) have been used
generally to realize the DAMs and a back-propagation
(BP)[1, 2] was proposed for the RNN. A multi-layered
NN, e.g., multi-layered perceptron, can approximates
any piecewise continuous function within a specific ac-
curacy if the neural network (NN) has hidden units as
many as necessary[3]. On the other hand, RNNs are
not sure to express the desired dynamics nor to guar-
antee their learning convergence.

Consequently, this study proposes a methodology

to realize the DAM that generates the desired rhyth-
mic motion. The proposed method realizes a DAM
based on a Fourier series and a standard oscillator
with nonlinear units generating sinusoidal motion. The
achieved DAM can generate any continuous cyclic tra-
jectory, which is steady and multivariable vector func-
tion. It also makes the desired rhythmic motion be
a limit cycle and attracts the trajectories started from
almost all initial states to the desired. Moreover, the
design procedure is established that ensures the DAM
within the specific approximation accuracy evaluated
by the mean squared error. Further, the DAM can be
realized by using RNNs and LNNs.

The rest of this paper is organized as follows. Sec-
tion 2 defines the desired dynamics that should be re-
alized by DAMs and shows problems of the existing
RNN, which is designed as in references[1, 2]. Sec-
tion 3 represents the proposed DAM and illustrates
its feasibility through a numerical simulation of a 1-
degree-of-freedom (DOF) system. In the same section,
a realization of the DAM using NNs is also mentioned.
In section 4, effectiveness of the proposed method is
examined by a numerical simulation where a space
robot changes its orientation by the cyclic motion of
the manipulator. Finally, concluding remarks are given
by section 5.

2. Desired DAM and Problems in RNN

2.1. Specifications of desired DAM

This study uses DAMs to store the rhythmic and cyclic
motions observed in locomotion, fluttering, and swim-
ming of animals and insects. The followings are the
specifications of the DAMs.

The desired cyclic trajectory is desired to be an at-
tractor so as to start the trajectory from any initial state.
It is also to be steady so as not to change its path.
Hence, the desired cyclic trajectory is requested to be



a steady limit cycle.

For a desired trajectory ψ(t) with a period T , an al-
lowable trajectory θ(t) is

θ(t) = ψ(τ) (1)

where τ = α(t)t + ∆t must be a monotone increase

function of t, α(t) � 1, and the phase angle φ
�
= ∆t/T

is in 0 ≤ φ < 2π. This requests the generated cyclic
trajectory has an almost constant period and any phase
angle to the desired trajectory.

Multivariable vector trajectories should be gener-
ated by the DAM for locomotion and so on where
many joints are moved. For the purpose, independent
limit cycle for each joint is not good enough, but they
must be synchronized.

It is better to specify the approximation accuracy of
the generated trajectory to the desired. The DAM must
be able to learn the desired trajectory by using some
learning method. In addition, an assurance of the learn-
ing convergence is desirable.

One would like to start motion from almost any state
because initial joint states are various in locomotion.
For the purpose, the desired trajectory is to be a limit
cycle with a large convergence region in state space.

The DAM realized by nonlinear differential equa-
tions is good for a robot control. However, the neural
network realization is desired to understand the brains
and the nervous systems, where the NN uses only neu-
ron units observed in living bodies.

2.2. Problems in RNN realization

Recurrent neural networks (RNNs) have been gener-
ally studied to realize the DAMs. The RNNs are used
to construct dynamical systems and a recurrent back-
propagation (RBP)[1, 2] was proposed for learning.
A multi-layered NN, e.g., multi-layered perceptron,
can approximates any piecewise continuous function
within a specific accuracy if it has hidden units as many
as necessary[3]. On the other hand, RNNs are not sure
to express the desired dynamics nor to guarantee their
learning convergence.

Following references [1, 2], Figure 1 shows a nu-
merical simulation, where a RNN has 20 neural units
connected by each other, it has studied the desired tra-
jectory 15,000 times by the RBP, and the trajectory is
a constant rate circle with (0.5 0.5) in center and 0.4
in radius. The RNN has formed a limit cycle that at-
tracts the generated trajectories to the desired, where
no teaching signals for studying are given to the RNN
for the first 5 s. But, the learned trajectory is not the
right circle. Consequently, one must discuss if the
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Figure 1: Learned trajectory by RBP following circular tra-
jectory

RNN enable to express the desired dynamics before
discussing convergence of learning.

3. DAM for Any Rhythmic Motion

3.1. Outline of DAM construction

The following outlines the design method of the DAM
satisfying the specifications. Firstly, a standard oscil-
lator is equipped to generate a sinusoidal oscillation
with the desired period. Higher harmonic oscillators
are constructed from the standard oscillator as many as
necessary. The desired cyclic trajectory of time is then
approximated by a Fourier series and its Fourier coef-
ficients are obtained. The desired cyclic trajectory is
generated by multiplying the harmonic oscillations to
the Fourier coefficients and summing them up.

3.2. Fourier series approximation

A cyclic function of time t with a period 2L is approx-
imated here by using a Fourier series. Assume that the
trigonometric function system

1, cos
π

L
t, sin

π

L
t, cos

2π
L
t, sin

2π
L
t, . . . (2)

of t can be generated by dynamical systems, e.g., oscil-
lators. If the function f(t) with period 2L is piecewise
smooth on a closed domain [−L, L], then a Fourier
series is generated from f(t) as:

f(t) ∼ a0

2
+

∞∑
i=1

(ai cos
iπ

L
t+ bi sin

iπ

L
t) (3)
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where a0, a1, a2, · · · and b1, b2, · · · are called
Fourier coefficients of f(t). One can consider that the
function f(t) with period 2L is piecewise smooth and
continuous because it describes a motion. The Fourier
series then converges to f(t) absolutely and uniformly.

The trigonometrical polynomial using finite number
of trigonometric functions

Sn(t) =
a0

2
+ a1 cos

π

L
t+ · · ·+ an cos

nπ

L
t

+b1 sin
π

L
t+ · · ·+ bn sin

nπ

L
t

(5)
approximates f(t) with the minimum mean squared er-
ror

E(f − Sn) =
1

2L

∫ L

−L

(f(t) − Sn(t))2dt (6)

when the Fourier coefficients are used as
a0, a1, a2, · · · , an and b1, b2, · · · , bn. Therefore,
one can specify the approximation accuracy of Sn by
selecting the number n that makes the mean squared
error E(f − Sn) of Eq. (6) less than the specific value.

3.3. Standard oscillator and higher harmonic os-
cillations

In the previous subsection, one assumes that the
trigonometric function system, Eq. (2), is generated by
dynamical systems. This subsection presents a method
to generate it. A standard oscillator is firstly equipped
by von der Pol’s equation. Higher harmonic oscilla-
tors are then constructed from the standard oscillator
as many as necessary.

3.3.1. von der Pol’s oscillator

A nonlinear dynamics is realized by von der Pol’s os-
cillator, where the dynamics has a limit cycle with a
constant rate trajectory on an unit circle:

dx

dt
=

[
ẋ

ε(ω2 − ω2x2 − ẋ2)ẋ − ω2x

]
(7)

y = Ωx (8)

where x = [x ẋ]T , x = [y1 y2]T and Ω =
diag[1, 1/ω], ε > 0. To discuss the stability of the

oscillator, let a Lyapunov function be

V (x, ẋ) =
1
2
(ω2x2 + ẋ2) (9)

then V (0, 0) = 0 and V (x, ẋ) > 0 is satisfied when
x �= 0 or ẋ �= 0. Since the time derivative is

V̇ = ω2xẋ+ ẋẍ

= ω2xẋ+ ẋ(ε(ω2 − ω2x2 − ẋ2)ẋ− ω2x)
= ε(ω2 − ω2x2 − ẋ2)ẋ2

= ε(ω2 − 2V )ẋ2 (10)

sign of V̇ changes beyond V =
ω2

2
. Hence V in-

creases in 0 < V <
ω2

2
with V̇ > 0 and V decreases

in
ω2

2
< V with V̇ < 0. Therefore V → ω2

2
as

t → ∞. It means that the solution would be con-
strained on the ellipse ω2x2 + ẋ2 = ω2. The ellipse
is a limit cycle because no singular point exists on the
ellipse and the state vector travels with nonzero rate.
The parameter ε gives the speed of convergence to the
ellipse and the convergence becomes quicker the larger
ε is.

Because the steady state solution is ω2x2+ẋ2 = ω2,
substituting it into Eq. (7) yields

ẋ =
[

0 1
−ω2 0

]
x (11)

The solution becomes x(t) = sinωt if the initial state
is x(0) = [0 ω]T at t = 0 and one obtains ẋ(t) =
ω cosωt. Hence the output becomes

y =
[

sinωt
cosωt

]
(12)

Because Eq. (7) generates the limit cycle, a solution
started from another initial state converges to

y =
[

sin(ωt+ φ)
cos(ωt+ φ)

]
(13)

where a phase φ in 0 ≤ φ < 2π depends on the initial
state. Eq. (12) can be considered as the steady state
output when t+ φ/ω is redefined as t.

3.3.2. Higher harmonic oscillators

Higher harmonic oscillators are needed for the Fourier
series approximation. For the purpose, a standard os-
cillator g(x, ẋ) is firstly equipped by the von der Pol’s
equation with a frequency ω = π/L and the output
y = [y1 y2]T = [sinωt cosωt]T is obtained. A higher



harmonic oscillation with a frequency jω is generated
by

sin jωt =
(j−1)/2∑

i=0

(
j

2i+ 1

)
(−1)iy2i+1

1 y
j−(2i+1)
2

cos jωt =
j/2∑
i=0

(
j
2i

)
(−1)iy2i

1 y
j−2i
2

(14)
As a result, all the higher harmonic oscillations can be
generated by the standard oscillator g(x, ẋ).

3.4. Generation of rhythmic motion

The cyclic function f(t) with a period 2L is approxi-
mated by the following procedure.

(i) Evaluate the approximation accuracy of Eq. (5) to
f(t) by the mean squared error of Eq. (6) and select
the number n. Calculate Fourier coefficients by Eq. (4)
and define w as:

wT =
[

1
2a0 b1 a1 · · · bn an

]
(15)

(ii) Equip the standard oscillator with the frequency
ω = π/L and the amplitude 1 by Eqs. (7) and (8).
Any initial state of x �= 0 can be selected because the
output y1 = [y11 y12]T converges to the standard os-
cillation from any initial state other than x = 0. Select
x(0) = [0 ω]T as the initial condition when the stan-
dard oscillation should follow just after the initial time.
Initial condition setting will be discussed later.

(iii) Define new output η including the higher har-
monic oscillations as:

η
�
=

[
1 yT

1 yT
2 · · · yT

n

]T
(16)

Generate y1, y2, . . ., and yn by Eq. (14).

(iv) Finally, generate the motion z � f(t) as:

z = wT η (17)

One often would like to start the trajectory from any
initial condition (z(0), ż(0)) because the generated
z(t) is the motion of animals or robots. In this case,
solve y1 from Eq. (17) as an independent variable and
determine y1(0). Calculate x(0) satisfying Eq. (12)
with y1(0) and give it to Eq. (7) as the initial condi-
tion. One can then start the motion from the specific
initial condition (z(0), ż(0)) and attract it to the de-
sired cyclic trajectory.

3.5. Extension to multivariable vector function

Multivariable vector function f(t) would be approx-
imated by the following equations for the motion of

animals and robots though the scalar function f(t) has
been discussed:

f(t) �= [f1(t) f2(t) · · · fm(t)]T

� [z1(t) z2(t) · · · zm(t)]T �= z(t) (18)

where each zi is obtained as

zi = wT
i ηi (19)

by using Eq. (17). All ηis, i.e., xis, must become equal
since zis are to be synchronized. In other words, phase
angle φis must be equivalent for all is. An approach is
to use only one common standard oscillator for all zis
but one cannot set the independent initial condition for
each zi. Accordingly, a standard oscillator of Eqs. (7)
and (8) is equipped to each i and their phase angles
are synchronized by the following equation. In order
to catch up the oscillator j with the maximum phase
angle φj , frequency ωi (i �= j) of other oscillators are
modulated as:

ωi = ω + ε

(
1 − xi · xj

|xi| · |xj|
)

(20)

where parameter ε gives speed of the synchronization.

3.6. NN realization

Discussed here is the realization of the DAM with
NNs. Figure 2 shows a schematic diagram of the
DAM, where the oscillator part is a RNN and the
Fourier series part is a layered NN (LNN). It is known
that the oscillators are realized by the RNNs composed
of nonlinear neuron units [4, 5]. The Fourier series part
is obviously achieved by a LNN if the Fourier coeffi-
cients are considered as the LNN’s connecting weights.
Therefore, the proposed DAM can be realized by the
NN composed of the RNN and the LNN.

3.7. Numerical example

Figure 3 is a phase portrait of the desired trajectory
and the trajectory generated by the proposed DAM.
The generated trajectory asymptotically converges to
the desired trajectory from the initial state that is not on
the desired trajectory. The generated trajectory tracks
the desired with almost no error after the convergence.
The DAM successfully makes the desired trajectory be
a limit cycle by using the von der Pol’s oscillators.
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Figure 2: Construction of NN for proposed dynamic associa-
tive memory

Figure 3: Phase portrait of generated and desired trajectories

4. Application to Space Robot Reorienta-
tion

A free-floating space robot is subjected to the non-
holonomic constraint due to the angular momentum
conservation. The attitude of the satellite vehicle may
be changed during the manipulator operation. The sys-
tem’s orientation in the final state is not determined
uniquely by the specific configuration of the manip-
ulator since the final attitude of the satellite vehicle is
dependent on the trajectory of the manipulator. Us-
ing the characteristics, the satellite attitude can be con-
trolled. Shown here is a numerical simulation, where
a space robot changes its orientation by the cyclic mo-
tion of the manipulator that is generated by the pro-
posed DAM.

The mathematical model corresponds to the exper-
imental system[6] simulating a space robot where the
robot model composed of two SCARA type manipula-

Figure 4: Generated trajectory in configuration space

Figure 5: Time history of joint and attitude angles

tors and a satellite vehicle can move freely on a two-
dimensional planar table without friction by using air-
bearings. For the reorientation, the robot drives only
the shoulder and the elbow joints of one arm. The de-
sired trajectory is based on the trajectory planned in
references[7, 8]. Figure 4 illustrates the generated tra-
jectory and the desired trajectory in the configuration
space of the the shoulder angle θ1 and the elbow θ2 .
The generated trajectory converges to the desired as
time passes. Figure 5 is the time history of the joint
angles and satellite attitude angle θ0. Figure 6 shows
the motion of the space robot. The satellite attitude
changes gradually.

5. Concluding Remarks

This study has proposed the methodology to realize
the dynamic associative memory (DAM) that generates
rhythmic and cyclic motions of animals and insects.
The proposed DAM is based on the nonlinear oscilla-
tor and a Fourier series. It has the following character-
istics.



Figure 6: Motion of space robot through cyclic motion

(a) The desired cyclic trajectory can be a steady at-
tractor, which does not change as time passes.
Hence the generated trajectory is attracted to the
desired trajectory.

(b) The DAM can generate multivariable vector func-
tions.

(c) The DAM can generate the trajectory with the
specific approximation accuracy evaluated by the
mean squared error to the desired. The Fourier
coefficients give the best approximation to the de-
sired trajectory.

(d) The motion can start from almost any initial state
because the von der Pol’s oscillator is a limit cy-
cle that attracts all trajectories started form points
other than the origin.

(e) The proposed DAM can be realized by the NN
composed of the RNN and the LNN.

Effectiveness of the proposed method has been exam-
ined by the numerical simulation of the space robot re-
orientation by the cyclic motion of the manipulator.
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