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Abstract

As there exists highly complicated interaction dy-

namics, it is in general extremely difficult to design

controllers for legged robots. Therefore, the Evolution-

ary Robotics is one of the most promising approaches

since it can automatically construct controllers by tak-

ing embodiment and the interaction dynamics with

the environment into account. Although this approach

has such advantages, there still exists several problems

that have to be solved. One of the critical problems

is known as the gap problem; the controller evolved in

the simulator show not the same fitness as those in the

real world due to unforeseen perturbation. Therefore,

it is highly necessary to establish a method enables

to efficiently construct adaptive controllers that can

cope with different situation. For this purpose we in-

troduce the concept of neuromodulators, allowing to

evolve neural networks which can adjust not only the

synaptic weights, but also the structure of the neu-

ral network by blocking and/or activating synapses or

neurons. We apply this concept to create an adap-

tive legged–robot controller which realizes not only fol-

low the desired walking velocity but also regulate the

amount of the torque output applied to each joint for

energy efficiency according to the current situation.

1. Introduction

Legged robots show siginificant advantages over
wheeled robots since they can traverse in uneven
and unstructured environments. This high mobil-
ity stems from the fact that in contrast to wheeled
or tracked robots legged robots discretely contact
with their environments via their legs. This, how-
ever, inevitably causes highly complicated dynam-

ics between the robots and their environments.
Thus, it is in general extremely difficult to design
controllers for legged robots.

So far various methods have been proposed to
construct legged–robot controllers, whilst very few
studies have investigated the design of controllers
considering the interaction dynamics with the en-
vironments [1, 4, 17, 18]. However, since the above
approaches are based on a hand–crafted manner,
it is questionable whether or not these approaches
will be still feasible (i.e. easily implemented) as the
complexity of the desired task and the interaction
dynamics increases.

On the other hand, recently the Evolutionary
Robotics (ER) approach has been attracting a lot
of concern in the field of robotics and artificial life
[6, 16]. In contrast to the conventional approaches
where designers have to construct controllers in
a top–down manner, the methods in the ER ap-
proach have significant advantages since they can
autonomously and efficiently construct controllers
by taking embodiment (e.g. physical size and shape
of robots, sensor/motor properties and disposition
etc.) and the interaction dynamics between the
robot and its environment into account.

In this paper, an evolutionary creation of an
adaptive neuro–contorlller for a legged–robot is in-
vestigated. In order to construct adaptive con-
trollers, we focus on creation of feedback loops
between the robot and its environment based on
its embodiment, and their regulation mechanisms
as the targets to be evolved instead of evolving
synaptic weights as in the conventional ER ap-
prroaches. To this end, we introduce the con-
cept of neuromodulators, allowing to evolve neural
networks which can adjust not only the synaptic



weights but also the structure of the neural net-
work by blocking and/or activating synapses or
neurons according to the current situation.

Here as the initial step of the investigation, we
attempt to create a single–leg controller which re-
alizes not only follow the desired walking veloc-
ity but also regulate the amount of the torque
output applied to each joint for energy efficiency
under various body weights. As there exists no
theory about how such dynamic neural network
can be constructed, the evolutionary approach is
the method of choice to explore the interactions
between the neuromodulators, receptors, synapses
and neurons. Simulations are carried out to verify
the feasability of the proposed method.

2. Issues in the Evolutionary
Robotics Approach

In the ER approaches, artificial neural networks
are widely used to construct controllers for au-
tonomous mobile agents, because they can gen-
eralize, are non–linear and noise–tolerant. An-
other advantage of neural network–driven robots
is that a neural network is low level description of
a controller. More precisely, it directly maps sen-
sor readings onto motor outputs. Due to this rich
emergent properties can be expected.

Although the ER approach has the above ad-
vantages, the following drawbacks still exist:

First, as the complexity of the desired task in-
creases, it becomes significantly difficult to evolve
the whole controller in one go. This problem is
sometimes reffered as the bootstrap problem [16].
Thus it is demanded to develop a methodology
which can automatically synthesize more complex
behavior than those designed by hand. In order to
alleviate this problem, several authors introduced
the concept of shaping [3], canalization [16], incre-
mental evolution [2] and so forth.

Second, as the evolution in the real world is
time–consuming, simulations are used instead to
evolve the controller in simulated environments
and the best individuals are tested in the real
world. The flaw of this combined approach is
that evolved agents in simulated environments of-
ten show a siginificantly different behavior in the
real world due to unforeseen perturbations, since
they tend to overadapt to the given environments
through the evolutionary process. In other words,
a gap between the simulated and real environments
exists. Therefore, it is indispensable to establish

a method which enables the evolved controllers
adapt not only to sepecific environments, but also
to environmetnal perturbations.

In the following, we particularly deal with the
second problem. Now, the the following question
arises. How can robots recognize their current sit-
uation and regulate their behavior appropriately?

A part of the answer may be that in the studies
so fare made in ER no attempt was made to select
directly for adaptation by changing the settings
of the experiments. As even a simple thermostat
needs sensory feedback to be able to control the
temperature, an essential ingredient to any adap-
tive controller are controlling sensors to give the
neural controller data how to change its current
state towards the “good” one.

To construct robust controllers against environ-
mental changes, in this study we focus on creation
of feedback loops and their regulation mechanisms
as the target to be evolved instead of evolving the
synaptic weights(see Figure 1). If we can success-
fully evolve the appropriate regulation mechanism,
we can expect high adaptability against environ-
mental perturbations.

Cognitive agent
(robot)

Feedback loops

Creation and regulation of
the feedback loops are the
targets to be evolved

Environment

Figure 1: Feedback loops between the robot and its
environment.

In principle the information carried by the feed-
back loops can have the following two effects: Ei-
ther one changes the weights of the synapses and
the neurons’ thresholds or one alters dynamically
the structure of the neural network itself. The
question is how can this be done and can such
methods be used to solve the above problem.

Interestingly, neuroscientific results suggest that
biological networks not only adjust the synaptic
weights, but also the neural structure by block-
ing or activating synapses or neurons by the use
of signaling molecules, so called neuromodulators
[13]. These findings stem from investigations made
with the lobster’s stomatogastric nervous system
in which certain active neurons diffuse neuromod-



ulators which then rearrange the networks. Note
that the effect of a neuromodulator depends not
only on theses substances, but also on the specific
receptors, which are differently expressed in differ-
ent cells.

The release of the neuromodulators depends on
the activity of the neurons and therefore different
sensor inputs may cause different patterns of re-
leased neuromodulators. As such dynamic mech-
anisms yield remarkable adaptation in living or-
ganisms, the proposed approach not only carries
promise for a better understanding of adaptive
networks, but they can be also applied to real–
world problems as we already showed in the pre-
vious work [5, 11].

3. Lessons from the Biological Find-
ings

3.1. Dynamic rearrangement in the biolog-
ical nervous system

Investigations carried out on the lobsters’ stom-
atogastric nervous system suggest that biological
nervous systems are able to dynamically change
their structure as well as their synaptic weights
[13].

A: oesophageal network

B: pyloric network C: gastric network

A1 A2

B1 B2 C1 C2

swallowing network

A1 A2

B1 B2 C1 C2

dynamic 
rearrangement

Figure 2: Dynamically–rearrangement of a lobster’s
stomatogastric nervous system.

This stomatogastric nervous system mainly con-
sists of an oesophageal, a pyloric, and a gastric net-
work. Normally, these three individual networks
show their own independent oscillatory behaviors,
but in the moment a lobster is eating the networks
are integrated and reconstructed to a new one,
the swallowing network, in which certain neurons
and connections are excluded and formerly inac-
tive connections are activated (see Figure 2).

Recent studies in neurophysiology showed neu-
romodulators (hereafter: NMs) play a crucial
role to regulate this remarkable phenomenon (e.g.
changing properties of synapses as well as neu-

rons).

3.2. Neuromodulators

NMs are substances that can dynamically influ-
ence several properties of synapses as well as
neurons and therefore the function of a neu-
ral network. In contrast to neurotransmitters
(NTs) the effect of NMs spreads slower and
lasts longer. NMs change the processing char-
acteristics of neural networks by affecting the
membrane potential, the rate of changing the
synapses (i.e. influence on learning mechanisms)
and other parameters. Typical NMs are acetyl-
choline, norepinephrine, serotonin, dopamin (all
are also used as NTs), somatostatine and cholecys-
tokinine (both also used as hormones in the human
body) and many small proteins. Although these
substances are released in a less local manner than
NTs, the effects can be quite specific. This speci-
ficity comes from specific receptors on the neurons
and their synapses.

These NMs stem either locally from the neural
network itself or from specific sub–cortical nuclei.
The local release of NMs depends on the activity
of the local neural network itself. On the other
hand, sub–cortical nuclei as the locus coeruleus
(noradrenergic innervation), the ventral tegmental
area (dopaminergic innervation) or the basal fore–
brain nuclei (cholinergic innervation) send neuro-
modulatory axons to cortical structures to release
NMs from axonal varicosities which is called vol-
ume transmission. Many publications in neuro-
science show the importance of NMs for dynamic
rearrangement of neuronal modules [13, 9] or for
learning and memory (switching between learning
and recall mode) [8].

In this study we implemented the following
properties:

• dynamic change of a neuron’s threshold

• dynamic blocking of synapses (possibly neu-
rons)

• dynamic change of the inhibitory or excita-
tory properties of a synapse

• dynamic modulation of synaptic weights (i.e.
learning).



4. Proposed Method

4.1. Basic concept

The basic concept of our proposed dynamically–
rearranging neural networks (hereafter: DRNN) is
schematically depicted in Figure 3. As in the fig-
ure, unlike the conventional neural networks, we
assume that each neuron can potentially diffuse
its specific (i.e. genetically–determined) NMs ac-
cording to its activity, and each synapse has re-
ceptors for the diffused NMs. We also assume that
each synapse independently interprets the received
NMs, and changes its properties (e.g. synaptic
weight). The way of these changes exerted on the
synapses is also genetically–determined.

coupling

diffused NMs

dynamic rearrangement

to actuators

emerged neural network

from sensors

Figure 3: Basic concept of the DRNN.

By selecting for regulatory feedback loops (cycli-
cal interaction between the diffusion and reaction
of NMs), we expect to be able to evolve adaptive
neural networks, which show not only a seamless
transfer from simulations to the real world but
also robustness against environmental perturba-
tions (in the figure, the thick and thin lines denote
the connections being strengthened and weakened
by NMs, respectively).

In summary, in contrast to the conventional ER
approach that evolves synaptic weights and neu-
ron’s bias of neuro–controllers, in this approach
we evolve the following mechanisms:

• Diffusion of NMs (when, which type of NMs
are diffused from each neuron?)

• Reaction to NMs (how do the receptors on
each synapse interpret the received NMs, and
modify the synaptic property?)

• Network architecture (the number of in-
terneurons, and how to connect among the
sensory, inter– and motor neurons)

To determine the above parameters, we use a Ge-
netic Algorithm (GA). Detailed explanation on
how a GA is implemented is given later.

4.2. Application problem

4.2.1. Task

Our aim is to create an adaptive controller for
a multi-legged robot that can appropriately cope
with different situation. However, in general it is
extremely difficult to evolve the whole controller
in one go.

Thus, in order to investigate the feasibility of
the DRNN approach, in this study we attempt to
construct an adaptive controller for a single–legged
robot as the initial step of the investigation. Here
the task of the robot is to not only follow the de-
sired walking velocity but also regulate the amount
of the torque output applied to each joint for en-
ergy efficiency under various body weights.
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Figure 4: Model of the single-legged robot.

4.2.2. Single–legged robot model

The model of the single-legged robot is schemat-
ically illustrated in Figure 4. The robot consists
of a body and two physical links (i.e. thigh and
shank) with two joints (i.e. hip joint and knee
joint). These joints are all independently driven
by pairs of antagonistic actuators (i.e. flexor and
extensor) in order to take not only static torque
but also the stiffness of the joints (for energy effi-
ciency) into account.

The hip angle (θ1) is measured according to the
deviation from the vertical line. We assume that
the hip joint can rotate between an angle of −60◦

(full extension) and 60◦ (full flexion). On the other
hand, the knee angle (θ2) is measured with ref-
erence to the thigh position, where the full knee
extension is an angle of 0◦ and full knee flexion
−120◦.

We assume that each joint is equipped with a
pair of AEP (anterior extreme position) and PEP
(posterior extreme position) sensors which inform



the current hip and knee angles, and also equipped
with a torque sensor to measure the applied static
torque. In addition, there exist a load sensor at the
tip of the leg to detect the amount of the vertical
force from the ground (Fv in the figure).

4.2.3. DRNN controller

Figure 5 schematically represents the structure of
the DRNN controller for the single–legged robot.
In the figure, the neurons with S and M denote
the sensory and motor neurons, respectively. The
neuron S8 is a neuron which is always activated
(i.e. output value of 1.0) to encourage any motor
activity even under no sensory inputs. The rest of
the neurons are interneurons. Detailed explana-
tion on how to create the controller will be given
in the next section.
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activation
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Figure 5: Controller for the single-legged robot.

As for the neural dynamics, we use a leaky inte-
grator model which is expressed as:

τi
dui
dt

= −ui +
∑
j

wij · aj − θi (1)

ai =
1

1 + exp(−0.5ui)
(2)

where ai is the activity of neuron i, and wij rep-
resents the synaptic weight of a connection from
neuron j to neuron i. ui is the membrane poten-
tial of neuron i, and τi denotes the time constant
of the membrane potential. θi is the threshold of
the neuron’s activity. We use a standard sigmoidal
function to limit the neuron’s activity.

4.3. Encoding scheme for the DRNN

Both the network architecture and the way of dif-
fusion and reaction to NMs in the DRNN are

closely related to not only the given task but
also the embodiment and the interaction dynam-
ics with the environment. Thus it is preferable to
automatically determine these parameters through
the evolutionary process. In order to exclude pos-
sible presupposition on these parameters we intro-
duce the concept of the developmental process.

4.3.1. Structure of the Genotype

The genotype for the DRNN (hereafter: network
genotype) is expressed as a binary bit string, and
is composed of a set of blocks, each block corre-
sponding to the genotype for a single neuron (neu-
ron genotype). For the ease of understanding, we
first explain the structure of the neuron genotype
in detail.

NM block Connection block S/M connection block

Flag Thr. Rule Flag Thr. Rule Flag Thr. Rule
0 0.4 Hebb 1 0.7 Block 1 0.3 None

SRs1
1

SRs2
1

SRs3
0

SRs4
0

ARm1

0
ARm2

1
ARm3

1
ARm4

1

NM1 NM2 NM3

AR1 SR1

1 1
AR2 SR2

0 1
AR3 SR3

1 0
AR4 SR4

0 1

Bias

Figure 6: Structure of the neuron genotype.

Figure 6 shows an example of the neuron geno-
type. As in the figure, each neuron genotype con-
sists of the bias gene and three blocks: NM block,
connection block, and S/M connection block. The
bias gene represents the threshold of the neuron.
NM, connection and S/M connection blocks con-
tain genetic information which specify the follow-
ing properties of the corresponding neurons, re-
spectively:
(a) NM block

The genes contained in this block determine the
way of diffusion and reaction to the NMs. As in
the figure, this block is composed of a series of
the parameter set (flag, threshold, rule), and each
set is responsible for one specific type of the NMs.
Thus in this example at most three types of NMs
can be diffused from the neuron concerned.

The parameters flag and threshold determine un-
der which condition the corresponding type of NM
is diffused from the neuron concerned. If the neu-
ron’s activity exceeds the genetically–determined
threshold value and also the flag is active, the
corresponding NM will be immediately diffused.
Here, we assume that the concentration of the dif-



fused NM (denoted as c(NMk)) is proportional to
the avtivation value of the neuron concerned (ai)
within the diffusible area.

On the other hand, the parameter rule deter-
mines how the receptor on the synapses which out-
grow from the neuron concerned interprets the cor-
responding type of NM and modifies the synaptic
properties. In order to reduce the genetic infor-
mation here we assume that all the synapses out-
growing from a given neuron have the same set of
the receptors.

Each parameter rule can take one of the follow-
ing four types of modulation: Hebbian learning,
anti–Hebbian learning, non–learning, and blocking
(i.e. excluding the synapse), respectively.

Suppose that there exists k types of receptors on
a given synapse, the following equation is used for
the dynamic modulation of the synaptic weights
as:

ctotal(NMk) =
∑
N

c(NMk) (3)

s =
∑
k

Rij(NMk)·ctotal(NMk) (4)

wt+1
ij =


wtij + η|s|(−1− wtij)aiaj for s < 0

wtij for s = 0

wtij + η|s|(1− wtij )aiaj for s > 0

(5)

where, ctotal(NMk) represents the total concentra-
tion of the diffused NM of type k in the network at
a given time, and N is the number of the neurons.
η is the leaning rate, and Rij(NMk) denotes the
parameter which determines how the synapse con-
cerned modifies its property when the NM of type
k is combined with the receptor on it. For this,
we use +1, –1, and 0 to express Hebbian learning,
anti–Hebbian learning, and non–learning, respec-
tively.

We assume that the blocking modulation has the
highest priority among the four types of modula-
tion. Thus, if a receptor which expresses blocking
is activated, the corresponding synaptic weights
will be forcibly set to zero notwithstanding other
receptors’ states.
(b) Connection block

This block is responsible for the connection es-
tablishment among the neurons. As in fig.6, this
block possesses a series of the parameter set (ARi,
SRi). Here ARi and SRi stand for an axonal and
synaptic receptors, respectively. If the parameter
ARi is activated, the neuron concerned outgrows
axons. Each AR (SR) has its own ID–number,

and the AR can make connections only with the
SR with the same ID–number.
(c) S/M connection block

This block determines the connection establish-
ment between the corresponding neuron and the
sensor and/or motors, equipped with the robot.
We assume that each sensor (motor) has its spe-
cially dedicated axonal (synaptic) receptor ARsi
(SRmi), and this receptor is always active. If
the neuron concerned activates the gene SRsi
(ARmi), then this neuron can connect with the
sensor with ARsi (the motor with SRmi).

4.3.2. Genetic operators

Each gene in the neuron genotype is randomly
changed with the prespecified probalility. In ad-
dition to this, as for the NM block and connection
block in each neuron genotype we use specially
dedicated mutation operators; random insertion
and/or deletion of the parameter set (i.e. (flag,
threshold, rule) for the NM block, (ARi, SRi) for
the connection block) is applied in order to explore
the appropriate number of NM types and connec-
tions with other neurons.

Due to the above insertion and deletion oper-
ators, each neuron genotype can have different
length. Consequently, the length of a network
genotype can differ from one to another. Thus,
in this study we use a mixing pot method [15] as a
crossover operator. Despite of its simplicity, this
operator can efficiently deal with the number of
neurons as the target to be evolved (detailed de-
scription of this method see [15]).

5. Results

As mentioned before, it becomes significantly dif-
ficult to evolve the whole controller in one go as
the complexity of the desired task increases. To
alleviate this, we introduce the concept of an in-
cremental evolution. In this study, we first evolve
the controller under the following evaluation crite-
rion:

fitness1 =
1.0

D∗ −D ×
2∑
i=1

∫ Tmax

0

|θ̇i|dt (6)

where D∗ and D denote the desired and resultant
walking distance, respectively. θ̇i is the angular ve-
locity of joint i, and Tmax represents the duration
of the evaluation process. The second term of the
right hand side of the equation is for encouraging
any oscillatory behavior.



After evolving during 200 generations under this
fittness function, the population obtained in the
last generation is used for the second stage of the
evolution as the initial population. The fitness
function used in the second stage is expressed as:

fitness2 =
fitness1

Econ
(7)

Econ =

2∑
i=1

∫ Tmax

0

{δ(Tiθ̇i) + Tfi
2 + Tei

2}dt(8)

Ti = Tfi − Tei (9)

δ(x) =

{
x for x ≥ 0
0 for otherwise

(10)

where Econ is the amount of the energy con-
sumed during the evolutionary process. Tfi and
Tei denote the flexor and extensor torque applied
to joint i, respectively. The body parameters used
in the following simulations are listed on Table 11.

To verify the adaptability of the DRNN, in the
simulations each individual is tested under various
body mass (M=1.8kg, 2.8kg) and the averaged fit-
ness value is used for the evaluation.

Table 1: Body parameters of the single–legged robot.

part length mass
body - 1.80/2.80[kg]
thigh 0.1[m] 0.15[kg]
shank 0.1[m] 0.15[kg]

Figure 7: Resultant trajectory of the best evolved
agent in the case of M=1.8kg.

Figure 7 and 8 represent the resultant trajectory
of the best evolved agent under the bady mass of
M=1.8kg and 2.8kg, respectively. Figure 9 and
10 are the transition of the torque outputs at the
waist joint under the same condition. From the

1For simplicity, the body is represented as a material
particle (i.e. no physical entity) with mass.

Figure 8: Resultant trajectory of the best evolved
agent in the case of M=2.8kg.
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figures, it is understood that irrespective of the dif-
ferent body mass, the robot can successfully cover
almost the same distance by adjusting the amount
of the torque output at the joints. We observed
that different types of the NMs were diffused ac-
cording to the sensory inputs in order to regulate
the torque outputs applied to each joint.

6. Conclusions

In this study, evolutionary creation of an adap-
tive controller for a single–legged robot was inves-
tigated. To this end we introduced the concept
of the dynamically–rearranging function in the bi-
ological nervous systems. The preliminary simu-
lation results were encouraging. We expect this
concept will provide a methodology for not only
seamless transfer from the simulated to the real en-
vironments but also evolutionary creation of con-
trollers with high adaptability. Detailed analysis
of the evolved DRNN is currently under investi-
gation. We will also quantitatively investigate the
adaptability of the evolved controllers compared
with the ones of the conventional approach where
the syanaptic weights are the targets to be evolved.

In the future, we will apply this concept to biped
and quadruped robots. For this purpose we are
currently developing a 3D simulator with the use of
a general–purpose fully dynamics simulator DADS
(Dynamic Analysis and Design System).
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