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Abstract

Optimal force distribution has been active field of research
for multifingered hand grasping, cooperative manipulators
and walking machines. The articulated body mobile robot
“KORYU” composed of cylindrical segments linked in se-
ries and equipped with many wheels have a different me-
chanical topology, but it forms many closed kinematic chains
through the ground and presents similar characteristics as
the above systems. This paper introduces an attitude control
scheme for the actual mechanical model “Koryu-II (KR-II)”,
which consists of optimization of force distribution consider-
ing quadratic object functions, combined with attitude con-
trol based on computed torque method. The validity of the
introduced method is verified by computer simulations and
experiments using the actual mechanical model KR-II.

1. Introduction

The authors have been developing a new type of mo-
bile robot configuration called an “Articulated Body
Mobile Robot”. This class of robot has a snake-
like configuration and is composed of many segments
linked in series. This configuration introduces advanta-
geous characteristics such as high rough terrain adapt-
ability and load capacity, among others. Two mechan-
ical models of articulated body mobile robot called
KORYU (KR for short) have been developed and con-
structed, so far. KORYU was mainly developed for use
in fire-fighting reconnaissance and inspection tasks in-
side nuclear reactors. However, highly terrain adaptive
motions can be achieved by KR: 1) stair climbing, 2)
passing over obstacles without touching them, 3) pass-
ing through meandering and narrow paths, 4) running
over uneven terrain, and 5) using the body’s degrees of
freedom not only for “locomotion”, but also for “ma-
nipulation”. Many other related studies have been re-
ported [3]-[10], but very few practical mechanical im-
plementations are available.

The fundamental control strategies necessary for
KORYU to perform the many inherent motion capabil-
ities are: 1) Attitude Control; 2) Steering Control [1];

Figure 1: KR-II moving on uneven terrain.

and 3) Mobile Manipulator Control [2]. This paper in
particular address the attitude control problem.

1.1. Attitude control problem description

KR-II is composed of cylindrical units (Fig.2(a)(b))
linked in series by prismatic joints which generate ver-
tical motion between adjacent segments. These pris-
matic joints are force controlled so that each segment
vertical position automatically adapts to the terrain ir-
regularities, as shown in Fig.3(a). The most simple
implementation of force control is to make these joints
free to slide. However, in this case the system acts
like a system of wheeled inverted pendulum carts con-
nected in series and is unstable by nature, as shown
in Fig.3(b). Thus, an attitude control scheme to main-
tain the body in the vertical posture is demanded. This
work introduces a new attitude control based in opti-
mal force distribution calculation using quadratic pro-
gramming for minimization of joint energy consump-
tion. As pointed out in detail in this paper, this method
shares similarities with force distribution for multifin-
gered hands, multiple coordinated manipulators and
legged walking robots.

This paper is organized as follows: In Section 2 the
background on optimal force distribution problem is
described. Section 3 introduces the optimal force dis-
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Figure 2: KR-II’s mechanism and motion variables.

tribution formulation and shows an efficient algorithm
to solve this problem. Section 4 presents the mechan-
ical modeling of KR-II and introduces the feedback
control law for attitude control. Finally in Section 5
the computer simulation and experimental results are
shown to demonstrate the validity of the introduced
method.

2. Background on Optimal Force Distri-
bution Problem

Many types of force distribution problems have been
formulated for multifingered hands, multiple coordi-
nated manipulators and legged walking robots. A brief
review of the fundamental concepts and similarities
with formulation of balance equation and equations of
motion of multibody systems are described.

2.1. Balance equations for the reference member

Multifingered hands, multiple coordinated manipula-
tors and legged walking robots can be modeled as one
reference member with k external contact points as
shown in Fig.4(a). Consider the reference member pa-
rameters given by: mass m0; linear and angular ac-
celeration at the center of mass �0;!0 2 R

3; in-
ertia tensor at the center of mass coordinate H0 2

R
3�3; force F i 2 R

3and moment M i 2 R
3 act-

ing on the ith contact point; position of the contact
point with respect to the center of mass coordinate
pi = [ pi1 pi2 pi3 ]

T 2 R
3. The resulting force

and moment at the center of mass is given by F 0 =

P
T
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Figure 3: Effects of force control.

Pk

i=1 F i 2 R
3 and M0 =

Pk

i=1(M i + pi � F i) 2

R
3. The balance equations is given below, where the

gravitational acceleration g which in principle is an ex-
ternal force, was included in the left term for simplicity
of notation.

m0 (�0 � g) = F 0 (1)

H0 _!0 + !0 � (H0 !0) = M0 (2)

The inertial terms can be grouped as Q 2 R
6, and the

external force terms into the matrix P and vector of
contact points N ,

P =

�
I3 0 � � � I3 0

~p1 I3 � � � ~pk I3

�
2 R

6�6k (3)

~pi =

2
4 0 �pi3 pi2

pi3 0 �pi1
�pi2 pi1 0

3
5 2 R3�3

I3 2 R
3�3 : Identity Matrix

N = [F T
1 M

T
1 � � � F

T
k M

T
k ]

T
2 R

6k (4)
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Thus the balance equations are described by the fol-
lowing linear relation.

Q = P N (5)

2.1.1. General solution

The general solution of Equation (5) with respect toN
is given by

N = P
+
Q+ (I �P+

P )� (6)

as described in reference [12], where P+ is a general-
ized pseudo-inverse matrix.

Basic formulation of force distribution and descrip-
tion about internal forces concepts were first addressed
by Kerr and Roth [11]. The fundamental concepts are:
i) the general solution can be divided in two orthog-
onal vectors N = Ne + N i; ii) the partial solution
N e can be solved by Ne = P

+
Q using the pseudo-

inverse matrix; iii) the partial solution N i resides in
the null-space of P and corresponds to the internal
forces; iv) (I�P+

P ) is a matrix formed by orthonor-
mal basis vectors which span the null space of P , and
� corresponds to the magnitude of the internal forces.
Kerr and Roth used these concepts to formulate a linear
programming problem which took in account friction
forces at contact points and also joint driving forces.

Force distribution problem for gripper and hands
usually results in searching optimal values for �.
Nakamura et al were the first to formulate a nonlinear
problem using quadratic cost function kNk to solve

the internal forces [13]. Efficient solutions using lin-
ear programming were also analyzed by other authors
[14][16]. Nahon and Angeles [15] showed that mini-
mization of internal forces and joint torques can both
be formulated in an efficient quadratic programming
method, and Goldfarb and Idnami method [19] can be
used to solve this problem. Other efficient formula-
tions are also been investigated [17][18].

2.2. Multibody systems

Multibody systems differ from multifingered hands as
shown in Fig.4(a)(b) not only by the fact that in gen-
eral they have no commom reference member, but also
because that forces and moments F i;M i acting in the
contact points arises from different phisical natures. In
system (a) the external forces are exerted from the fin-
gers, manipulators or legs. However, system (b) can
not have external forces exerted from the ground. In-
stead, the forces and moments at the contact points are
originated from the gravitational acceleration and in-
ternal motion of the system itself. However, balance
equations and equations of motion for these systems
present similar characteristics as described next.

2.2.1. Balance equations

Let the variables k, F i, M i, pi be defined the same
in Fig.4(a)(b), the Equations (3)(4) are valid for both
systems, but Equations (1)(2) due to inertial forces are
not. However, the total force acting on the systems’s
center of mass can be derived as Q(q; _q; �q), i.e., as
function of generalized coordinate q; _q; �q. Hence, the
balance equations can be described by

Q(q; _q; �q) = P N (7)

Equations (7) and (5) are mathematically equivalent,
and therefore the fundamental theory discussed in sec-
tion 2.1.1 can also be applied to multibody systems.

2.2.2. Equations of motion

For the system in Fig.4(a), the problem of finding op-
timal values for contact forces N and joint forces �
can be independently formulated. However, the equa-
tions of motion can also be grouped as Equation (8) for
optimization of joint forces of the entire system [12].

� =H�q +C +Gg + J
T
N (8)

It is well known that Equation (8) has the same struc-
ture for robot manipulators and multibody-systems
where H is the inertial term, C the coriolis and cen-



trifugal term, Gg the gravitational term, and J is the
Jacobian matrix. Therefore, the equations of motion
for systems in Fig.4(a) and (b) are mathematically
equivalent.

3. Efficient Algorithm for Solving Opti-
mal Force Distribution Problem

3.1. Cost function

Electrical motor’s energy consumption at low speed
but high output torque operation can be estimated by
the power loss in the armature resistance. Hence, the
sum of squares of joint forces � can be used as the cost
function to be minimized.

S(� ) = �
T
W� (9)

Note that W is a symmetric positive definite matrix.
Now let Hq = H�q + C +Gg, G = 2JWJ

T and
d = 2JWHq be defined as auxiliary variables. Sub-
stituting Equation (8) into (9) results in

S(� ) = H
T
qWHq + d

T
N +

1

2
N

T
GN(10)

a new cost function depending on the variable N .

3.2. Quadratic problem formulation

The first term in the right side of Equation (10) does
not depend on N , so the new const function can be
described by Equation (11). A general quadratic pro-
gramming problem can now be formulated as Equa-
tions (11)(12)

min.
N

: S(N ) = d
T
N +

1

2
N

T
GN (11)

subject to:
�
P eN = Qe

P iN � Qi

(12)

Equations (12) are linear constraint equations, with
equality constraints given by Equations (5) or (7), and
inequality constraints given by the system’s friction,
contact and joint force limitations. A positive definite
matrix W guarantees this problem to be strictly con-
vex, thus having efficient solution algorithms [19].

3.3. Solution considering equality constraints

The partial problem when considering only equality
constraints can be solved as

N e = P
+

e Qe �He d (13)

with generalized pseudo-inverse matrix P+

e defined as

P
+

e =G
�1
P
T
e (P eG

�1
P
T
e )
�1 (14)

and auxiliary matrix He defined as

He = (I �P+

e P e)G
�1 (15)

From the observation that the first term of Equation
(13) corresponds to the norm of N , i.e., the solution
which minimizes NT

GN , the second term is the par-
tial solution which minimizes the norm of � . Note that
although it resides in the null-space of P e an analytic
solution is available.

3.4. Solution considering inequality constraints

Problems with inequality constraints usually do not
have analytical solutions but use some kind of search
algorithms [13][15][19]. In order to achieve better
real-time performance, only negative contact forces
will be considered in this formulation. This is valid for
hands, grippers, walking machines and mobile robots
in general, that can exert positive forces, i.e., “push”,
but can not exert negative forces, i.e., “pull”. The pro-
posed method introduces a new equality constraints
term P dN = Qd 2 R

d into the balance Equation
PN = Q,

P e = [P T
P
T
d ]

T (16)

Qe = [QT
Q
T
d ]

T (17)

The basic idea is to transform the problem with in-
equality constraints into a problem with only equality
constraints that can be solved efficiently by Equation
(13). This is accomplished by the algorithm described
below. Note that the variable d represents the number
of contact points included in the equality constraints.

Step 0. Initialization: case d0 > 0 make d = d0 and
include the contact forces P dN = Qd 2 R

d0

into Equations (16)(17). Case d0 = 0, initial-
ize P e = P and Qe = Q.

Step 1. Calculate the partial solutionNe considering
only equality constraints from Equation (13).

Step 2. Let the number of negative contact forces in
the solution N e be dn. Case dn > 0 go to
Step 3. Otherwise, this is the optimal solution.
Calculate joint forces by Equation (18). Finish.

� e =Hq + J
T
Ne (18)



Step 3. Update d = d + dn. Case d �

(free variables� balance equations) go to Step
4. Otherwise the problem can not be solved.
Finish.

Step 4. Set the desired contact force at the contact
points where resulted in negative forces to zero
and include in the equality constraint P dN =

Qd. Return to Step 1.

Although this algorithm is suited for real time applica-
tions, it does not search for all the combination of pos-
sible solutions. For this reason it might finish in Step
3. even a possible solution exists. However, for nor-
mal steering control, passing-over pipes and ditches,
and attitude control of KR-II, a possible solution was
always found after a limited number of iterations. An
example will be later described in Section 5.

4. KR-II’s Attitude Control

4.1. KR-II’s variables

KR-II’s motion freedoms can be grouped as: z-axes
linear displacements z = [ z1 z2 � � � z6 ]

T
2

R
6; �-axes angular displacements � =

[ �0 �1 � � � �6 ]
T

2 R
7; wheel’s angular dis-

placements s = [ s0 s1 � � � s6 ]
T
2 R

7; body’s
coordinate position c0 = [x0 y0 z0 ]

T and atti-
tude � = [�X �Y �Z ]

T relative to the inertial
coordinate. This accounts for 26 degrees of freedom.
KR-II’s inertial parameters are listed in Table 1. Note
that the extra loads were accounted in the body’s front
part (FP).

In this work, balance and motion equations given
by Equations (7)(8) were derived by Newton-Euler
method, but other efficient virtual power methods [7]
can also be used.

4.2. Simplifications

4.2.1. Wheel modeling

The wheel will be simplified to a simple model:

1. It is a thin circular plate with constant radius.

2. It contacts a horizontal plane even when moving
on slopes.

However, the horizontal plane is set independently for
each wheel so that this simplification is effective for

Table 1: KR-II’s inertial parameters.

mass Inertia[kg m2] mass center [mm]
Seg Part [kg] Ix Iy Iz px py �pz

FP 5.0 0.04 0.04 0.01 120 0 300
0 SP 28.0 0.24 0.24 0.07 0 0 570

RP 10.8 0.40 0.30 0.08 -100 0 270
Wh 3.6 0.12 0.06 0.12 0 0 778

1 FP 35.4 1.27 1.27 0.42 64 9 273
2 FP 41.7 1.73 1.71 0.45 54 17 227
3 FP 32.1 1.27 1.28 0.35 70 0 278
4 FP 45.6 1.64 1.71 0.45 46 17 229
5 FP 31.6 1.11 1.13 0.35 70 0 291
6 FP 40.2 1.60 1.60 0.46 56 0 241

1�5 RP 9.5 0.24 0.19 0.05 -230 0 170
6 RP 4.2 0.11 0.09 0.02 -225 0 186

IP 4.5 0.04 0.01 0.03 218 0 150
1�6 SP 7.2 0.03 0.04 0.03 0 80 744

Wh 3.6 0.12 0.06 0.12 0 240 778

(Parts abbreviations)

FP: front part
RP: rear part
IP: intermediate plate
SP: steering plate
Wh: wheel part

(Extra internal loads [kg])

Seg1: extra servo-amp (5.8)
Seg2: on-board computer (12.1)
Seg3: attitude sensor (2.5)
Seg4: battery-pack (16.0)
Seg5: DC-DC converter (2.0)
Seg6: AC-DC converter (10.6)

motion over uneven terrains. Nonetheless, for stair
climbing and step overcoming motions, a better con-
tact point estimation algorithm is under investigation.

4.2.2. Other simplifications

1. External contact forces: the wheel’s lateral and
longitudinal forces are small because optimal tra-
jectory are planned by the steering control [1]
and also abrupt acceleration and deceleration are
avoided. Moreover, moments between the tire and
the ground are also negligible. For these reasons,
the tire normal force Fzi can be considered the
only external force acting on the system. Hence
the external contact force vector is given by

N = [Fz0 Fz1 � � � Fz6 ]
T
2 R

7 (19)

2. Joint forces: z-axes and �-axes motions can be
independently planned because KR’s z-axes ori-
entations are controlled to be always vertical. In
fact, �-axes are position controlled and their de-
sired angular displacements are planned by the
steering control [1]. On the other hand, although
s-axes motion can be used for the attitude control,
it would involve undesirable acceleration and de-
celeration in the system. For these reasons, z-axes
forces will be set as the variables to be optimized.

� = [ fz0 fz1 � � � fz6 ]
T
2 R

7 (20)

Note that fz0 was included just for avoiding sin-
gularity in the calculation, but always result in
fz0 = 0.



3. Balance equations: from the above considera-
tions, force balance in the z direction and moment
balance around x and y direction are enough to
model our system. Hence, the dimension of the
balance Equation P N = Q becomes Q 2 R

3

and P 2 R
3�7.

4. Generalized accelerations: only a part of
the 26 degrees of freedom of KR-II, qs =

[ zT �
T �X �Y ]

T and its time derivative

_qs =
�
_zT _�

T _�X _�Y
�T

is used in the cal-
culation. The acceleration variables are further
simplified to

�qa = [ �x0 �y0 �z0 ��X ��Y ]
T (21)

and used as �q � �qa.

5. Other parameters: other dimensions are as fol-
lows: H 2 R

7�5; C 2 R
7; Gg 2 R

7;
J 2 R

7�7; P d 2 R
d�7; Qd 2 R

d.

4.3. Attitude feedback law

The formulation described so far, solves for joint
forces which balance the system in a given desired pos-
ture. This is fundamentally an inverse dynamics prob-
lem. A feedback control law shown below is added
into Equation (21)

��X = ��Xd
+KPX (�Xd

� �Xm
)�KDX

_�Xm
(22)

��Y = ��Yd +KPY (�Yd � �Ym)�KDY
_�Ym (23)

where KP ;KD are proportional and derivative gain
and the indexes d;m stands for desired and measured
values. This control law is equivalent to the (Computed
Torque Method)[20] so that the closed-loop system sta-
bility can be analyzed in the same way.

5. Computer Simulation and Experimen-
tal Results

Computer simulation and experiment using the real
robot KR-II, were evaluated for an ”obstacle passing
over (without touching them)” where a box shape ob-
stacle with width 300mm and height 150mm was con-
sidered. This motion was performed at a constant for-
ward velocity of 100mm/s. The vertical motion of each
segment is shown in Fig.5(a). Note that the calculated
displacement includes a 10mm displacement for safety,
resulting in a 160mm total vertical displacement.

5.1. Continuity of calculated forces

Discontinuities in the calculated forces occurs when
topological changes are caused by lifting-up or
touching-down of the wheels. In this paper these dis-
continuities are avoided by introducing desired contact
forces using the equality constraints P dN = Qd in
Step 0. The desired forces when lifting-up is given as

Fdn = FUpn
(50� Zn)

50
(24)

and when touching-down the ground is given as

Fdn = FDownn
(50� Zn)

50
(25)

FUpn is the optimal force calculated just before the
wheel lift-up, FDownn is the optimal force calculated
considering that the wheel has completely touch-down
the ground, Zn is the segment vertical diplacement as
shown in Fig.5(a). These equations are applied only in
the interval Zn = 0 � 50mm. The constant 50 was
derived considering KR-II’s spring suspension stroke.
For vertical displacements above 50, the desired con-
tact force is set to zero. The simulation results shown
in Fig.5(b)-(c) demonstrate the validity of the proposed
method.

5.2. Experimental results

The experiment was held applying the feedforward
command shown in Fig.5(c) and feedback command
given by Equations (22) and (23). The feedback gains
were KPX = 65; KDX

= 18; KPY = 95; KDY
=

16 and all the computation were performed in real-
time with a sampling-time of 20ms using a 486DX2-
50MHz CPU based PC. The experiment overview is
shown in Fig.6.

Fig.7(a) shows the performance of attitude control.
Large attitude changes occur at times when more than
one segment is lifted-up at the same time, but the over-
all performance is acceptable for finishing the passing-
over motion. The sum of squares of z-axes joint forces
measured during the experiment is shown in Fig.7(b),
which has the same tendency as the simulation result
in Fig.5(d).

6. Summary and Conclusions

An attitude control scheme based in optimal force dis-
tribution using quadratic programming, which mini-
mize joint energy consumption was derived in this pa-
per. Similarities with force distribution for multifin-
gered hands, multiple coordinated manipulators and
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Figure 5: Obstacle passing over simulation.

legged walking robots were demonstrated. The attitude
control scheme was introduced inside this force dis-
tribution problem, and successfully implemented for
control of the articulated body mobile robot KR-II. Va-
lidity and effectiveness of proposed methods were ver-
ified by computer simulation and also experimentally
using the actual mechanical model KR-II.
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