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Abstract

A neuro-musculo-skeletal  model of human upper limb is
constructed that can spontaneously generate natural
reaching motion without prior formation of an optimal
trajectory.  Given a goal position, the model immediately
generates muscular activation signals that tend to move the
hand to the goal, utilizing  the anatomical constraints of the
body motion.  The simulated motions agree with those of
humans, suggesting that such mechanism may be
incorporated in actual human motor control.

1. Introduction

It is generally accepted that human well-practiced

movement is generated along a priorly planned trajec-

tory that minimizes a certain objective function such

as hand position jerk or rate of change of joint

torque[1,2].  In order to generate appropriate muscle

stimulation signals for an optimally planned hand tra-

jectory, an inverse-dynamics problem of the musculo-

skeletal system should be solved in the brain[3].  Hu-

mans, however, can also generate reasonable motions,

even for natural unconcerned gesture or inexperienced

motion, in which we can not assume formation of an

optimal trajectory based on an objective function.

Human motion seems to be generated not to re-

sist against the anatomical constraints of the human

body, such as limb kinematics, inertial properties of

limbs, range of joint motion, muscle size and attach-

ment and so on.  Such body constraints may be uti-

lized so as to spontaneously induce casual  movement.

Based on this hypothesis, in this study, we attempt to

develop a neural network model that can spontaneously

generate natural reaching motion toward a target.  An

inexperienced  targeted reaching movement can be re-

garded as an example of  natural, casual motion.

2. Model

2.1 Musculo-skeletal model

Human mimetic musculo-skeletal model is constructed

as  two-dimensional three rigid links representing up-

per arm, fore arm and hand in a sagittal plane as shown

in Figure 1.  The equations of motion of the three rigid-

link system are derived as

M(q)q h(q,q) g(q) (q) (q) T˙̇ ˙ ˙+ + − + =α β (1)

where q  is a (3 ×  1) vector of joint angles, T  is a (3 ×
1) vector of joint torques caused by contraction of

muscles, M(q)  is a (3 ×  3) inertia matrix, h(q,q)˙  is a

(3 ×  1) vector of torque component depending on

Coriolis and centrifugal force, and g(q)  is a (3 ×  1)

vector of torque component depending on the gravity

respectively, elements of which are functions of

parenthesized variables.  α (q)  and β(q)˙  are (3 ×  1)

vectors of the torques exerted by the joint elastic and

viscous elements, which defines the passive resistive

torques due to joint capsules and ligaments, restricting

ranges of joint motions.  The inertial parameters of each

segment are determined  so as to be equivalent to those

of actual human.  The joint elastic and viscous elements

are represented by the following double-exponential

function[4] and the linear viscous elements:

α j j jk k q k k k k q= − − − − −1 2 3 4 5 6exp( ( )) exp( ( )) (2)
β j j jc q= ˙ (3)

where α j  and β j  are the torques exerted by elastic and

viscous elements around the j  th joint (the j  th element

of α (q)  and β(q)˙ ), q j  is the j  th joint angle, and k1 6~

and c j are coefficients (see Table 1), respectively.

Figure 1. Musculo-skeletal model



Table1. Joint parameters

  Joint        k1         k2         k3        k4          k5          k6       c
Shoulder 1. 2.16 -0.12 1. 3.35      2.02    1.6

Elbow 1. 3.96 0.70 1. 3.14      1.73    0.8

Wrist 1. 2.04 -0.76 1. 2.40      0.83    0.5

On each upper extremity, total of 8 muscles are

considered including biarticular muscles as shown in

Figure 1.  Moment arms of the muscles are assumed to

be constant irrespective of joint angles.  The joint torque

vector T  can be expressed as

T G F= − ⋅T (4)

where F  is a (8 ×  1) vector of muscle forces, and G  is

a ( 8 ×  3) matrix of the moment arms.  Each muscle

generate force according to muscle activation am  by

the following muscle model[5]:

f f k h am m m m m= ⋅ ⋅ ⋅( ) ( )ξ η
k m m m( ) . . exp . ( ) sin . ( . )ξ ξ ξ= + − −{ } −{ }0 32 0 71 1 11 1 3 72 0 66
h m m( ) tanh( . )η η= +{ }1 3 0 (5)

where m  is muscle number, fm  is muscle force, fm  is

the maximum muscle force, Lm  is muscle length, Lm

is the optimal muscle length, L̇m  is muscle shortening

velocity (positive for stretching), L̇m
 is the maximum

muscle velocity (=3.0m/s), ξm  is the normalized muscle

length L Lm m/ , ηm  is the normalized muscle velocity
˙ / ˙L Lm m

, k m( )ξ  is the force-length relationship, and

h m( )η  is the force-velocity relationship, respectively.

Muscle activation dynamics are modeled by the fol-

lowing equation:

τ ( / )da dt a ym m m= − + (6)

where ym is a motor command to the muscle from the

nervous system, τ  is the muscle activation time con-

stant (=0.07sec).  Musculo-skeletal parameters, such

as moment arms and maximum muscle forces are de-

termined by literature so as to be equivalent to those of

actual human.

2.2 Nervous model

2.2.1 Motion generating principle

In this study, motion is generated based on the follow-

ing pseudo-potential P , the minimum point of which

is the goal position,  x0 , represented in the spatial co-

ordinate.

P T= − −( ) ( )q q W q q0 0 (7)

where q0   is the joint angles of the limb when the goal

position x0  is reached, W  is a (3 ×  3) positive definite

weight matrix.  In order to generate motion based on

this potential,  the muscles need to generate joint

torques satisfying the following equation:

T W q q q q= − − +( ) ( ) ( )0 α g (8)

It is theoretically confirmed that such system is stable

because of the viscous property of the joints[6].

2.2.2 Recurrent neural network model

In order to generate joint torques by Equation (8), q0

has to be estimated from the goal position x0 , which is

represented in the spatial coordinate provided by the

visual system.  However, because the number of

degrees of freedom of joint angles exceeds that of the

two-dimensional spatial coordinate system, there are

infinitely many combinations of joint angles to point

the same position.  Here we consider to utilize the

dynamics of a recurrent neural network[7] to

spontaneously transform spatial position into joint

angles.  In order to construct a recurrent neural network

that can autonomously estimate the joint angles from

present hand position, the following potential function

Iu  is defined:

I d mj
q

u

j
i

i

T
i
g

T

j

j

u g r u

J u u q x x J u u q x x

= − + − ⋅

+ − − −{ } − − −{ }

∫∑ ∑δ α θ θ

κ

( ( ) ( ))

( )( ) ( ) ( )( ) ( )
2 0 0 (9)

where u  is the neural representation of joint angles,
uj  is the j  th element of  u  , q j  is the angle when
α j = 0  (neutral posture), mi  is the mass of the i  th
segment, ri

g  is a (2 ×  1) vector of center of gravity of

the  i  th segment,  g  is the gravitational acceleration

vector, J u( )  is the Jacobian matrix at u , and δ  and κ
are coefficients.  The first and second terms represent

total potential energy stored in the musculo-skeletal

system of the upper limb.  The third  term denotes a

p e n a l t y  f o r  n o t  s a t i s f y i n g  a  c o n s t r a i n t

J u u q x x 0( )( ) ( )− − − =0 , which decreases as the hand

position x u( )  approaches to x0 .  The  recurrent neural

network which autonomously decrease the potential

Iu can be expressed as

d dt I

T

u

u g u J J u u q x x

u u/ ( )

( ( ) ( )) ( )( ) ( )

= − ∇

= − − + + − − −{ }{ }
µ

µ δ α κ 0

(10)

where µ  is a coefficient.  According to the change in

u  represented in the nervous system, the nervous



system then calculates neural representation of joint

torques, N , according to Equation (8) as

N W u q q g q= − − +( ) ( ) ( )α (11)

In this study, it is assumed W I= w , where I  is a (3 ×
3) unit matrix, and w  is a coefficient.

Since number of muscles exceeds number of

joint degrees of freedom, another layer of recurrent

neural network is constructed for estimation of

appropriate muscle activation signals from N ,

assuming the following potential function:

I T T T T
v v v G F N G F N= + ′ − − − −ξ κ

2
( ) ( ) (12)

where v  is the (8 ×  1) vector of the inner states of

motoneurons, and ξ  and ′κ  are coefficients.  The first

term represents the sum of square of vm , and the second

term denotes a constraint that N  is equal to the

summation of the muscular forces.  The recurrent neural

network which autonomously decrease the potential Iv

can be expressed as

d dt I

T T T

v

v G F G F N

v v/ ( )

( ) ( )

= − ′ ∇

= − ′ − ′ − −{ }
µ

µ ξ κ2 (13)

y vm m= + − −max( /( exp( ) , )2 1 3 1 0 (14)

where F = diag f f f f f f f f[ , , , , , , , ]1 2 3 4 5 6 7 8 , ym  is the motor

command to the m th muscle, value of which is

restricted from 0 to 1 by the output function (14), and

′µ  is a coefficient.

By incorporating the potential described by

Equation (12), Equation (10) can be rewritten as

d dt
T T T

u u g u

J J u u q x x W G F N

/ { ( ( ) ( ))

( )( ) ( ) ( )}

= − − +

+ − − −{ } − − −

µ δ α

κ λ0

         (10*)

where λ  is a coefficient.

Figure 2 shows a schematic diagram of the

neural network model. Given the visual information

regarding a goal position, x x0 − , the neural network

model produces muscle activation signals that tends to

minimize the potential defined by Equation (9) and

(12), and motion is generated.  Then the resultant

motion (joint angles q  and muscle forces F ) is returned

back continuously to the nervous system through

proprioceptors.  Thus the entire neuro-musculo-skeletal

systems are mutually integrated, and motion that is

naturally affected by the structure and properties of the

musculo-skeletal system can be generated.

In this model,  the joint torques due to the joint

elasticity and the gravity seems to be compensated as

Equation (11), but because of the time lag or delay in

the neuro-dynamics, generated motions are actually

affected by them passively.

3. Simulation Method

Motion towards a given goal position x0  from an initial

posture at t = 0  can be calculated by numerically

integrating Equations (1,6,10*,13), which are expressed

as 25 simultaneous differential equations.  In order to

solve this initial-value problem, we use the fourth-order

Runge-Kutta method for numerical integration, for a

time interval of 0.005sec.  All programs are written in

C language on an engineering workstation (HP C160).

The  coe f f i c i en t s , µ δ κ µ γ κ λ, , , , ' , , ' ,w ,  a r e

determined as 0.01, 500/(t+1)2,800(t+1)2,10 (4 for

downward motion),0.02, 25, 5,  and 100, respectively,

so that the human-like motion can be generated.  The

values of δ  and κ  are represented as functions of time,

because d dtu /  (Equation(10*)) becomes zero before

the hand reaches to the goal, especially when motion

opposes the joint property and/or  the gravity.

4. Results

Figure 3 shows the stick figures of the simulated reach-

ing motions for two different combinations of initial

and goal positions.  A dot in each stick diagram repre-

sents a goal position, and an arrow indicates direction

of motion.  The generated trajectories are compared

with the actually measured trajectories, represented by

series of white circles in the figure.  The attached

graphs compare the joint angles (JA) and tangential

speed of hand (tan sp) for each simulated and actuallyFigure 2 Nervous model



measured motions.  The muscle activations am   (Mus

Act) are also presented.

Figure 3 demonstrates that the proposed model

can successfully generate anti-gravitational reaching

motions similar to those of actual humans.  The mini-

mum hand jark model[1] predicts linear trajectories for

these motions, but the proposed model could success-

fully generate curved paths, not going against struc-

tural restrictions of the body due to the passive joint

properties and the gravitational effect.  The tangential

speed profile also becomes a bell-shaped curve.  The

muscle activation profiles are smooth and not contra-

dicting to the motions, indicating  that muscles are rea-

sonably utilized.

5. Discussions

In this study, anatomical constraints of the musculo-

skeletal system are assumed to be represented as po-

tential functions; by utilizing the neural dynamics of

the proposed network, the redundancy problem in mo-

tor coordination is solved and structurally reasonable

motions are spontaneously generated.  Complex

musculo-skeletal structure of the human body is often

regarded as constraints or perturbations which must be

technically compensated for intended motion control.

This study implies that the anatomical constraints can

be turned into advantage, and may be utilized for in-

ducing structurally reasonable motion.  Such structur-

ally adapted motion may be energetically reasonable

as well.  Optimality of human movement seems to be

collaterally emerged as a consequence of motion gen-

eration based on the body structure.

In this study, the structurally adapted motions

are not generated by explicit control based on a priorly

planned optimal trajectories, but continuously emerged

due to attractor dynamics.  Because of the mutual in-

teractions among the entire neuro-musculo-skeletal

systems, the integrated system becomes a gradient sys-

tem, attractor of which is an equilibrium point defin-

ing a goal position and all state variables behave au-

tonomously as if a ball slides down a valley to its bot-

tom.  Therefore, reasonable motion can be spontane-

ously generated without explicit optimization.

  Synthesis of human motion generally requires

massive computational power for solving an optimi-

zation problem.  This model, however, can generate

almost real time movement by using an engineering

workstation, indicating its possible future application

in motion synthesis of a computerized mannequin for

evaluation of human interaction with system or envi-

ronment.
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Figure 3. Generated anti-gravitational motions
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