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Abstract

We present scaling arguments verifying that as an animal’s
size decreases, the relative friction and viscosity (damping
ratio) of their limbs increases. These intuitive predictions are
supported by data from other studies, our experiments on the
death head cockroach (Blaberus Discoidalis), and our mod-
eling results, all of which we briefly describe. High damping
has implications for control, favoring the use of simple feed-
forward strategies; we show evidence that this is actual con-
trol mechanism which cockroaches use. Additionally, high
damping ratios and the presence of Coulomb friction lead
to a preference for running over walking, which is also ob-
served. For the joints we studied, the majority of the damping
was apparently due to the mechanics of the joint itself, and
not to the soft tissues.

1. Introduction

Relative to their size, cockroaches are among the
fastest land animals [1]. In addition, there is a grow-
ing body of knowledge regarding their kinematics and
biomechanics. Thus, they are attractive design targets
for biomimetic locomotive robots [2].

Most biomimetic walking and running robots fall
far short of the dynamic capabilities of their biologi-
cal relatives. One reason is that the robots are typi-
cally built on larger length scales than the animals that
inspire their design, and the dynamical characteristics
and control strategies of the animals are not preserved.

In this paper, we propose a particular model for the
scaling of damping in small insects, summarize our re-
sults of ongoing laboratory damping measurements in
cockroaches, suggest how these phenomena are rele-
vant to control, and briefly test some of our hypotheses
with observations and data from the animals.

2. Scaling Theory

During legged locomotion, a leg can be in one of two
phases: swing phase or stance phase. During swing
phase, the leg moves forward relative to the body, and
is commonly thought to act like a pendulum [3]. Dur-
ing stance phase, the leg is thought to behave more or
less like an inverted pendulum as it supports the body.
(We say “more or less” because for running gaits, a
pogo stick is a more appropriate analogy than a pen-
dulum, but the pogo stick is a combination of an in-
verted pendulum and a spring.) The dynamic behaviors
of these two cases will be different because in stance
phase, the body is considered to be part of the pendu-
lum, while in swing phase, the body is not considered
to be part of the pendulum. In a sense, we will test the
extent to which these pendulum assumptions are valid.

Using pendulum-like models, studies over the past
thirty or so years have established scaling rules which
have mostly dealt with the effects of animal size on
limb shape and gait characteristics [4, 5]. In humans
and large animals, we are accustomed to the notion
that the limbs are underdamped when they move as
pendula; that is, friction and viscous effects (which we
refer to collectively as “damping”) play a minor role
in the limb dynamics during one step, both in swing
and stance phases. In cockroaches and smaller ani-
mals, however, damping may not be negligible, espe-
cially during the swing phase.

We use a simple second-order mechanical model,
shown in Figure 1, to quantify how damping should
increase as length scales decrease. Consider a system
with a single cylindrical limb connected to the body at
a hinge joint. The limb has massm, density�, length
L, diameterd, and angular position� (positive counter-
clockwise), and we could include the effects of gravity
g, depending on how the joint is oriented with respect
to gravity (neglectg for sprawled postures, includeg
for upright postures). A single muscle actuates the



limb; this muscle is modeled as an ideal force genera-
tor which produces a forcef(t). This muscle and its
(presumably relaxed) component on the opposite side
of the joint have some stiffness and viscosity which can
be collected into a spring and damper acting in paral-
lel. Because muscle tissue consists of sarcomeres in se-
ries and in parallel, the spring and damper are assumed
to have stiffness and viscosity proportional to the limb
cross-sectional areaA and inversely proportional to the
limb length. The net stiffness will be proportional to
the muscle elastic modulusE, and the damping will be
proportional to the viscosity
; E and
 are material
constants which are invariant to length scale. We may
include the damping torque of the joint itself, which we
assume is equal to the productC _�, whereC is propor-
tional to the amount of surface area contact at the joint
C = ĈA (assuming that the joint surface area scales
with A). When considering the limb as an inverted
pendulum, we also need to know the effective massM

of the body, which for simplicity will be concentrated
at the body center of mass.
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Figure 1: Theoretical pendulum model used to predict scal-
ing of damping ratio. For the stance phase, it would be more
correct to present an inverted pendulum, but for consistency
and familiarity we only use one orientation. Moreover, the
scaling of the damping ratio does not change with the pendu-
lum orientation.

The general dynamics of the system (both swing and
stance phase) are described by an equation of the form

J �� +B _� +K� = rf(t); (1)

whereJ is an inertia term,K is a stiffness term, and

B is a damping term. The actual scaling relationship
will depend on whether it is the swing phase or stance
phase under consideration, as well as several other as-
sumptions, the most important of which is the relative
scaling of lengths and diameters. These assumptions
affect the constantsJ , K, andB (which in turn are
functions ofm, �, L, d, Ĉ, A, etc.) in Equation 1, and
hence the damping. The details of the calculations can
be found in a full-length paper in preparation [6].

We are interested in the damping ratio�,

� =
B

2
p
JK

; (2)

which describes the significance of the damping over
short time scales. If� > 1, the damping dominates
the dynamics and the system is said to beoverdamped,
whereas if� < 1, the damping is negligible and the
system is said to beunderdamped. If � � 1, the sys-
tem iscritically damped; critical damping is associated
with fast return to equilibrium. In general, higher�
suggests that more energy is lost during voluntary mo-
tions, while if � = 0, no energy is lost. The value of
� also has implications for control, as we will address
below.

2.1. Swing Leg

We first restrict our attention to the behavior of the
swing leg. Independent of the assumptions, we find the
general rule that damping ratio increases as leg length
(or length scale) decreases. The leading terms in the
series expansions for� as a function ofL aboutL = 0
are shown in Table 1, for a number of different scal-
ing laws. These include isometric scaling (d � L) and
elastic similarity (d � L3=2) [7], with and without joint
viscosityC.

2.2. Stance Leg

Now we consider the behavior of the stance leg, during
which the body is considered to be part of the pendu-
lum, now inverted and hinged at the ground (we ne-
glect the limb massm and assume that the body mass
M is attached at the top end of the pendulum). Since
damping is assumed to be insensitive to limb orienta-
tion, Equation 1 and Figure 1 still apply if we fix the
foot on the ground and swing the leg upside down (in
order to simplify the experiments described later). In
the stance phase, the scaling predictions differ more,
depending on the assumptions used. For most of the
assumptions, damping ratio increases as leg length de-
creases, as shown in Table 2.



Assume g 6= 0 g = 0

d � L;C = 0 � � L�1 � � L�1

d � L3=2; C = 0 � � L�1=2 � � L�1=2

d � L;C 6= 0 � � L�2 � � L�2

d � L3=2; C 6= 0 � � L�5=2 � � L�5=2

Table 1: Leading-term scaling results for the damping ratio�

during swing phase as a function of limb lengthL asL! 0.
Assumptions are as follows:g 6= 0 represents upright pos-
ture, whileg = 0 if gravity is neglected (sprawled posture).
C = 0 neglects joint viscosity, whileC 6= 0 includes a joint
viscosity term proportional to surface area and joint angular
velocity. d � L assumes geometric scaling of limb thick-
ness, whiled � L3=2 assumes elastic similarity as proposed
by McMahon [7]. Regardless of the assumptions used,� in-
creases with decreasingL, suggesting that damping is more
dominant at smaller length scales.

Assume g 6= 0 g = 0

d � L;C = 0 � � L�1 � � L�1

d � L3=2; C = 0 � � L1=2 � � Const:

d � L;C 6= 0 � � L�2 � � L�2

d � L3=2; C 6= 0 � � L�3=2 � � L�2

Table 2: Leading-term scaling results for the damping ra-
tio � during stance phase as a function of limb lengthL as
L ! 0. See the caption of Table 1 for an explanation of the
assumptions. For most of the assumptions, and for the most
reasonable assumption of joint viscosity and elastic similar-
ity, stance phase� increases with decreasingL.

2.3. Comments On Scaling Results

The scaling results shown in Tables 1 and 2 demon-
strate that, for both isometric and elastic scaling as-
sumptions, the length scale decreases as the damping
ratio increases. Insects operate at much smaller length
scales than humans, and so the higher damping ratio
should be evident. It is of course expected that at very
small length scales, other forces which are not modeled
in Equation 1 might become relevant, such as more
complicated viscoelasticity, plastic-like bulk deforma-
tion effects, sliding friction, etc. It is also important to
note that comparing scaling asL ! 0 is not the same
as comparing actual scaling exponents for small but fi-
niteL. In the former case, the leading term dominates
the scaling, but in the latter case, the relative contribu-
tions of the terms in the series depend on the particular
values of the length-independent constants (Ĉ, E, and

, for instance). By themseles, our results should not
be used to compare assumptions about scaling as much
as to indicate that at small length scales, damping plays
an increasingly dominant role in the dynamics of small
animals.

3. Measurements From Cockroach Legs

There are little data on how damping scales with size,
in part because controlled (e.g., muscle activation) and
uncontrolled (e.g., viscous) effects are usually not sep-
arated in the motor control literature. In humans,
Reiner and Edrich [8] estimated the passive joint mo-
ments of the lower extremities and found that damping
was negligible for most purposes. At the smaller scale
of the human finger, Hajian and Howe [9] found damp-
ing ratios at the human finger joint to be of order(1);
they also found that the ratios differed by a factor of
about 2, depending on whether or not the joint was
extending or flexing. Esteki and Mansour [10] also
studied the properties of a finger joint and applied a
nonlinear viscoelastic model to characterize the pas-
sive joint moment. They claimed that joint friction is
relatively insensitive to joint speed in human fingers.
We estimated the passive damping properties of cock-
roach legs, with the expectation that they would exhibit
greater damping than seen in human limbs. We also
wanted to determine the accuracy of a damping model
of the form of Equation 1.

3.1. Method

To estimate passive damping parameters of cockroach
muscles and joints (for eventual use in dynamic sim-
ulations), we performed some simple pendular exper-
iments. We separated the femur-tibia segments from
the rest of the body and fixed the femur. In some ex-
periments, we removed relevant muscles and internal
tissue in order to isolate the effects of the joint itself,
as opposed to the effects of the muscles and apodemes.
We then applied perturbations to the tibia and filmed
the time response as it returned to a resting position,
mainly due to gravity. We added different masses (be-
tween one-tenth of body mass and body mass) to the
tibia and repeated the procedure several times. Re-
sults were compared with numerical simulations hav-
ing different dissipation laws. More sophisticated ex-
periments are planned, and more complete details will
be given in a full-length paper [6].

3.2. Results

Motivated by the familiar damped oscillator model
(Equation 1 withf(t) = 0), and similar studies, we
attempted to fit our results to this model (assuming a
viscous torque proportional to_�.



Poor Model Fit For Swing Phase

For the unloaded trials (which represent swing phase)
there appear to be some effects which are difficult to
model if M = 0 but negligible ifM > 0:1�(body
mass). The effects appear in trials with and with-
out muscle and seem to dependent on the direction
of the initial perturbation. Possible explanations for
these complicating effects are: (1) effects of the joint
membrane itself, or (2) residual effects of the elastic
apodeme (which is not removed when the muscle is
removed). Figure 2 shows an example data set from a
swing-phase experiment with muscles removed.
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Figure 2: Example results from a perturbation experiment
with no added mass and muscles removed. The plot has a
fast-response phase and a slow-response phase, and is not
well-characterized by a simple spring-dashpot model. How-
ever, the model can be used to characterize each phase in-
dependently, and the model results from the slow-response
phase only are consistent with the results from the experi-
ments with added mass. The fast response may be caused by
some residual elasticity in the joint membrane or possibly the
elastic apodeme, which remains in the joint after the muscle
tissue is removed. This effect becomes negligible when we
add mass to the swing limb; the smallest increment of added
mass was about one-tenth of body mass.

Model Works Well For Stance Phase

For trials with added mass, a linear damping compo-
nent models the passive limb motions reasonably well
(RMS errors of less than 5%, see Table 3) Adding a
Coulomb or quasi-Coulomb component (so that fric-
tional torque is approximately proportional toB1

_� �
B2) would give an even better fit, although the con-

stant term is not considered in the scaling law deriva-
tion for � in Section 2.. We say “quasi-Coulomb” and
“approximately proportional” because a true Coulomb
term is discontinuous at_� = 0 and can be problematic
for numerical simulations. High-order roots or arctan-
gent functions are smooth Coulomb-like functions that
are more practical from a numerical standpoint [24].

Although we could include Coulomb-like terms in
our model, we still discuss the damping ratio as if the
damping were linear because the linear term accounts
reasonably well for the majority of the damping, and
because the damping ratio is a convenient concept. The
values ofB (i.e.B1 with B2 = 0) which yielded good
agreement with the experiments were between1e � 7
and5e� 7 kg-m2/s. Figure 3 shows example simula-
tions, overlayed on top of data for cases with and with-
out added mass.
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Figure 3: Example results from a perturbation experiment
with added mass. Damping was assumed to be proportional
to angular velocity; we chose a damping constantB which
minimized the total RMS error between simulation and ex-
periment. The extrapolated response results from a simu-
lation with the same damping constant but no extra mass,
intending to simulate the unloaded swing-phase response
shown in Figure 2. The extrapolated response suggests that
the leg is overdamped during swing phase, but there are com-
plicating factors implied by Figure 2. The parameters from
the simulations are as follows:m = 1:3e � 5kg, L =

0:0113m, Icm = 2:0e � 10kg-m2, M = 0 or 2:71e � 4kg,
g = 9:81m/s2,B = 2:17e� 7kg-m2/s,�0 = �0:367rad.

Damping Ratios For Swing And Stance

Preliminary results from a best-fitB with no Coulomb-
like terms are shown in Table 3. Although we could
not directly model the swing phase, we extrapolated
the damping ratio by assuming that the damping co-



efficientB was independent of added mass. We then
simulated the limb response with no added mass using
the sameB, as shown in Figure 3. The no-mass sim-
ulations were consistent with the slow decay phase of
the no-mass experiments (see Figure 2).

Case � RMSE, %

Stance w/ muscle 0:19� 0:01 1:6� 0:5

Stance w/o muscle 0:13� 0:01 3:6� 0:6

Swing w/ muscle 6:53� 0:11 NA
Swing w/o muscle 5:92� 0:41 NA

Table 3: Best-fit results for damping assumed proportional to
_� with and without muscles. RMS error is expressed as per-
centage of maximum angular displacement per trial. For each
case, we performed 2-4 experiments. The added masses dur-
ing stance phase produce leg forces comparable to individ-
ual leg forces measured during the stance phase of running.
The swing phase damping ratios are extrapolated from the
results of the stance phase, assuming similar frictional char-
acteristics with no added mass. Because an accurate model
for the swing phase would probably need to include extra
springs, dampers, etc., we were not able to effectively model
the swinging limb response using Equation 1.

Effect Of Muscle Tissue Removal

Removal of muscle tissue (but not the apodeme) low-
ered the damping ratio by about 30 % for the stance
(weighted) case and by about 10% for the swing (un-
weighted) case.

4. Discussion

Our preliminary results support the theoretical and in-
tuitive predictions of higher damping in cockroach
limbs than in larger mammals. During stance phase,
cockroach limbs are underdamped, while during swing
phase, they are overdamped. Because removal of the
muscle tissues did not dramatically decrease the damp-
ing ratio, we conclude that joint damping is primar-
ily due to the internal friction and viscosity associated
with the joint, and secondarily to the viscosity of the
muscles and surrounding tissues.

4.1. Implications For Control

Higher damping ratios are associated with decreased
energetic efficiency, and thus might be deemed unde-
sirable. However, higher damping ratios have several
potentially-interesting control implications.

� Preference For Running Over Walking

As relative damping increases, walking motions
become less “free.” This is because the ex-
change between potential and kinetic energy
(which characterizes walking) has a cost propor-
tional to the amount of joint friction (and is fur-
ther reduced by the horizontal orientation of the
limbs). As the damping increases, the effec-
tiveness of the pendular mechanism is compro-
mised, and a new locomotion strategy (running)
emerges. The transition between walking and
running appears to be modulated by their relative
energetic costs [11]. Insects and other animals
with relatively high damping and sprawled pos-
tures should have a walk-to-run transition that oc-
curs at a lower speed. (A rough analogy is the
observation that people have a lower transition
speed when moving in deep water, although this
analogy will break down under careful scrutiny
[24].) Likewise, insects should prefer lower stride
frequencies than might be predicted from size-
related scaling arguments, due to the high-swing-
velocity penalty. Lastly, the presence of speed-
independent damping (Coulomb friction) men-
tioned in Section 3 implies a preference for short,
quick bursts of force to minimize frictional energy
loss [24].

� Motor Command Is A Velocity Command
In an underdamped environment, muscle acti-
vation is like a force or torque command; the
limb exhibits poor stability and requires addi-
tional (feedback) control to return to equilibrium
and minimize oscillation following a perturbation
[12, 13]. An overdamped or critically damped en-
vironment is like a first-order system, since there
is no overshoot when returning to equilibrium.
Applied forces or torques are analogous to con-
stant limb velocities which quickly decay to zero
if removed. When coupled with some sensing of
time or position, velocity control is analogous to
position control. This implies that small animals
should be able to successfully locomote in a dy-
namically stable fashion using feedforward com-
mands with relatively little feedback. Larger an-
imals, however, would exhibit greater sensitivity
to perturbations and therefore presumably require
some feedback to minimize leg oscillations that
might upset the dynamic stability of gait.

4.2. Observations From Cockroaches

� Preference For Running Over Walking
Cockroach data from Full and Tu [14] support
this hypothesis. Energy traces of kinetic and po-



tential energy are nearly in phase, in contrast to
the out-of-phase patterns which are seen in walk-
ing. They were unable to find evidence of walking
gaits at any speed. Cockroaches and other small
animals prefer to run intermittently than to walk
[15]. Although Alexander [16] suggests that gait
transitions occur at equivalent Froude numbers
(squared nondimensional velocities), cockroaches
do not follow this trend. Specifically, walk-run
transitions in humans and similarly sized ani-
mals occur at Froude numbers of about 0.5 [16].
Although the walk-run transition was not mea-
sured in cockroaches, they are observed to use
running gaits down to Froude numbers of 0.027
(0.08 m/s). One possible reason for the discrep-
ancy with the Alexander study is that Alexander’s
conclusions may not apply to animals with over-
damped swing limbs.

� Motor Command Is A Velocity Command
There is some reason to believe that cockroaches
rely primarily on feedforward strategies. Unpub-
lished experiments on cockroaches with a “Rapid
Impulsive Perturbation” system [17] suggest that
limb angles in cockroaches do not change sig-
nificantly in response to impulsive perturbations,
even relatively large ones which noticeably dis-
rupt the animal’s posture and velocity while it
is running. Other researchers have also found
evidence that insect limbs appear to follow a
predetermined kinematic pattern [18], possibly
using position control [19] or velocity control
[20]. Moreover, hindlimb muscle EMG measure-
ments during steady state cockroach running are
nearly identical as compared to those taken while
maneuvering over large obstacles [21]. Lastly,
simple horizontal-plane models by Schmitt and
Holmes [22] and Kubow and Full [23] demon-
strate the plausibility of passive and/or feedfor-
ward strategies producing dynamically-stable pla-
nar gaits with no feedback.

4.3. Generalizability Of Scaling Ideas

The scaling results presented here may be roughly in-
terpreted in a larger, less specific context that is “part
of the common folklore of physics and engineering”
[24]. Many processes can be approximately modeled
by the damped oscillator of Equation 1. In these pro-
cesses, the damping componentB is often assumed
to be proportional to some characteristic surface area,
while the inertia termJ might be proportional to a
characteristic mass. In this case, the importance of
the damping (as compared to the inertia) at different

length scales would follow a surface area to volume
power law (length�1=3) [25]. Generally speaking then,
for many phenomena, one would expect the relevance
of damping to increase in any observations or applica-
tions at very small length scales.

This argument extends across various disciplines;
for instance, in fluid dynamics, the Reynolds number
(Re) is a well-known measure of the relative impor-
tance of dynamic forces as compared to viscous forces
(low Re signifies relatively higher viscous forces).Re
is proportional to (length)� (velocity). Thus, it is
common knowledge in fluid mechanics that as length
scale decreases,Re decreases, and viscous forces tend
to dominate.

Acknowledgments

The initial ideas in this work were originally born out
of discussions between Anna Ahn, Devin Jindrich, and
the authors. Kenneth Meijer and Thang Lian assisted
in the first set of damping experiments. Andy Ruina,
Anindya Chatterjee, Dan Koditschek, Devin Jindrich,
Rob Howe, and Phil Holmes provided many helpful
insights and suggestions.

References

[1] R. J. Full and M. S. Tu, “The mechanics of rapid-
running insects: Two, four, and six-legged loco-
motion,” Journal of Experimental Biology, vol.
156, pp. 215–231, 1991.

[2] R. J. Full, “Biological inspiration: Lessons from
many-legged locomotors,” inRobotics Research:
The Ninth International Symposium, J. Holler-
bach and D. Koditschek, Eds. Springer-Verlag,
2000.

[3] W. Weber and E. Weber,Mechanics of the Hu-
man Walking Apparatus, Springer-Verlag, New
York, 1992, translation from the original 1836
German text by P. Maquet and R. Furlong.

[4] R. McN. Alexander, Size And Shape, Edward
Arnold, London, 1971.

[5] T. A. McMahon and J. T. Bonner,On Size And
Life, Scientific American Library, New York,
1983.

[6] M. S. Garcia, A. D. Kuo, R. J. Full, A. M. Peattie,
and P. Wang, “Joint friction in insects: Implica-
tions for hexapedal robots,” Full-length version
of these proceedings, in preparation, 2000.



[7] T. A. McMahon,Muscles, Reflexes, and Locomo-
tion, Princeton University Press, 1984.

[8] R. Riener and T. Edrich, “Identification of pas-
sive elastic joint moments in the lower extremi-
ties,” Journal of Biomechanics, vol. 32, pp. 539–
544, 1999.

[9] A. Z. Hajian and R. D. Howe, “Identification of
the mechanical impedance at the human finger-
tip,” ASME Journal of Biomechanical Engineer-
ing, vol. 119, pp. 109–114, 1997.

[10] A. Esteki and J. M. Mansour, “An
experimentally-based nonlinear viscoelastic
model of joint moment,”Journal of Biomechan-
ics, vol. 29, no. 4, pp. 443–450, 1996.

[11] F. J. Diedrich and W. H. Warren Jr., “Why
change gaits? dynamics of the walk-run transi-
tion,” Journal of Experimental Psychology, vol.
21, no. 1, pp. 183–202, 1995.

[12] N. Hogan, “The mechanics of multi-joint posture
and movement control,”Biological Cybernetics,
vol. 52, pp. 315–331, 1985.

[13] F. A. Mussa-Ivaldi, N. Hogan, and E. Bizzi,
“Neural, mechanical, and geometric factors sub-
serving arm posture in humans,”The Journal
Of Neuroscience, vol. 5, no. 10, pp. 2731–2743,
1985.

[14] R. J. Full and M. S. Tu, “The mechanics of six-
legged runners,”Journal of Experimental Biol-
ogy, vol. 148, pp. 129–146, 1990.

[15] N. C. Heglund and C. R. Taylor, “Speed, stride
frequency, and energy cost per stride: How do
they change with body size and gait?,”Journal
of Experimental Biology, vol. 138, pp. 301–318,
1988.

[16] R. McN. Alexander, “The gaits of bipedal and
quadrupedal animals,”The International Journal
Of Robotics Research, vol. 3, no. 2, pp. 49–59,
1984.

[17] D. Jindrich, 1999, Personal Communication.

[18] J. T. Watson and R. E. Ritzmann, “Leg kine-
matics and muscle activity during running in the
cockroach,Blaberus discoidalis,” J. Comp. Phys-
iol. A, vol. 182, pp. 11–33, 1998.

[19] H. Cruse, “Is the position of the femur-tibia joint
under feedback control in the walking stick in-
sect?,”Journal of Experimental Biology, vol. 92,
pp. 87–95, 1981.

[20] J. Dean, “Control of leg protraction in the stick
insect: A targeted movement showing compen-
sation for externally applied forces,”J. Comp.
Physiol. A, vol. 155, pp. 771–781, 1984.

[21] R. J. Full, K. Autumn, J. I. Chung, and A. Ahn,
“Rapid negotiation of rough terrain by the death-
head cockroach,”American Zoologist, vol. 38,
pp. 81A, 1998.

[22] J. Schmitt and P. Holmes, “Mechanical models
of insect locomotion i: Dynamics and stability in
the horizontal plane,” in preparation, 1999.

[23] T. M. Kubow and R. J. Full, “The role of the me-
chanical system in control: A hypothesis of self-
stabilization in hexapedal runners,”Phil. Trans.
R. Soc. Lond. B, vol. 354, pp. 849–861, 1999.

[24] A. Ruina, 2000, Personal Communication.

[25] R. Howe, 1999, Personal Communication.


